Синергетика. Основы методологии - [4]
На этом этапе нужно не точное знание о природе, а шарж, схватывающий характерные черты изучаемых объектов и процессов. Это связано с тем, что научные данные — это проверяемые опытом данные, то есть повторяющиеся с той или иной точностью. Чем более сложен объект научного исследования, тем больше в нем индивидуального, тем меньшее число частных особенностей предмета может быть научно исследовано на первом этапе. Если мы оставляем при исследовании сложного объекта лишь одну обобщенную координату (меру, параметр целого), то в качестве неё можно использовать величину, характеризующую объём многообразия координат, более детально описывающих систему. Это может быть действие, энергия, масса системы, энтропия или информация, реальный геометрический объем, количество входящих в неё подсистем, количество денег, прибыль, количество слов в языке и даже переменная возможность существования самой системы.
В ряде случаев можно принять за параметр целого изучаемого объекта число элементов — квантов, которые включены в объект как в обобщенную волну. Если каждый из них имеет свою меру или параметр целого и эти меры аддитивны, — суммарную меру всех квантов.
В этом случае введение параметра целого подразумевает значительное информационное сжатие, то есть идентификацию квантов, включённых в систему как в обобщённую волну.
Однако, параметр целого не полностью определяет динамику исследуемой структуры или системы. В действительности, в некоторых случаях отдельные части системы могут воздействовать на изменение этого параметра. Поэтому близкие по типу системы на одном и том же этапе развития могут иметь отличающиеся друг от друга значения этого параметра. Правильно выбранный параметр целого обычно является управляющим параметром системы, он изменяется более медленно, чем другие обобщённые координаты системы, и более устойчив к внешним возмущениям и к переходу от анализа одной системы к изучению другой.
В некоторых случаях параметр целого может характеризовать качество системы и различие в этих параметрах для сравниваемых систем определяет превосходство одной системы над аналогичной.
Простейший вид описания состоит в представлении динамики объекта в виде двух чисел 0 и 1, где 0 соответствует отсутствию объекта, а 1 — его существованию.
Введём групповое умножение.
0*1=0 — ликвидация объекта.
1*0=0 — подтверждение отсутствия объекта.
0*0= 1 — рождение объекта.
1*1=1 — подтверждение существования объекта.
{0,1} — коммутативная группа, описывающая существование объекта.
На этом уровне изучения уже можно построить одномерное фазовое пространство, в котором фазовая траектория описывается в виде двух направленных отрезков прямых, отрезка {0,1} и отрезка {1,0}.
Если взаимно однозначно отобразить группу {0,1} на группу {-1,1}, являющуюся группой зеркальной симметрии, то устанавливается соответствие между существованием и отсутствием объекта с его тождественностью самому себе и зеркальным отображением.
Всякий реальный объект должен иметь начало и конец во внешнем времени, а следовательно, некоторый период существования. Предположим, что до момента t1, объекта не существовало. Параметр целого данного объекта равнялся нулю. В момент t1, произошло рождение объекта, который просуществовал до момента времени t2, после которого он исчез. Такое простейшее эволюционное рассмотрение позволяет ввести ряд математических понятий.
1. Момент рождения объекта t1.
2. Момент исчезновения — разрушения объекта или его превращения в новый объект t2.
3. Срок жизни объекта dt = t2 — t1.
Если рассмотреть множество идентичных структур (квантов) — обобщённую волну, — то подобный подход позволяет нам вводить в рассмотрение определённые типы распределений, связанные с числом структур, их моментами рождения и гибели и длительностью их существования.
Предположение о конечности времени существования реальных объектов ставит следующие вопросы:
Что такое рождение структуры (системы)?
Что такое разрушение структуры (системы)?
При первичном (простейшем) рассмотрении можно считать, что структура рождается и исчезает мгновенно. В этом случае можно осуществить простейшее графическое, описание динамики объекта в виде графика зависимости параметра целого от времени. Этот график представляет собой три отрезка горизонтальных прямых:
— бесконечность < t <= t1, >μ = 0
t1 < t < t2, >μ = 1
t2 <= t < бесконечность, >μ = 0
(Здесь, как и ниже, для параметра целого, описывающего структуру, введено обозначение >μ
.).
В моменты возникновения и разрушения структур в природе должны происходить качественные изменения (ведь рождается или исчезает) нечто новое).
Большинство существующих научных теорий описывает взаимодействие уже существующих структур. Проблема же их возникновения и разрушения не имеет в настоящее время полного решения.
Однако, при первичном исследовании конкретного объекта целесообразно начинать с рассмотрения именно этого вопроса, тем более, что во многих случаях эго решение представляет наибольший практический интерес.
В простейшем рассмотрении мы считали, что рождение и исчезновение структуры происходят мгновенно. Это достаточно сильное допущение, хотя во многих случаях мы действительно наблюдаем очень быстрое формирование новых структур и разрушение старых. В человеческом языке существуют такие слова, как катастрофа, кризис, взрыв, революция, рождение, разрушение, удар и т. д. Однако в любом случае рождение и разрушение структур — это процесс, имеющий ту или иную протяжённость во времени.

Книга Дж. Гарта «Толкин и Великая война» вдохновлена давней любовью автора к произведениям Дж. Р. Р. Толкина в сочетании с интересом к Первой мировой войне. Показывая становление Толкина как писателя и мифотворца, Гарт воспроизводит события исторической битвы на Сомме: кровопролитные сражения и жестокую повседневность войны, жертвой которой стало поколение Толкина и его ближайшие друзья – вдохновенные талантливые интеллектуалы, мечтавшие изменить мир. Автор использовал материалы из неизданных личных архивов, а также послужной список Толкина и другие уникальные документы военного времени.

Содержание антологии составляют переводы автобиографических текстов, снабженные комментариями об их авторах. Некоторые из этих авторов хорошо известны читателям (Аврелий Августин, Мишель Монтень, Жан-Жак Руссо), но с большинством из них читатели встретятся впервые. Книга включает также введение, анализирующее «автобиографический поворот» в истории детства, вводные статьи к каждой из частей, рассматривающие особенности рассказов о детстве в разные эпохи, и краткое заключение, в котором отмечается появление принципиально новых представлений о детстве в начале XIX века.

Развод - очень больная и деликатная тема для многих взрослых. А что тогда говорить о детях, которые не меньше, а может быть, и больше переживают уход отца из семьи.Как помочь ребенку в этой ситуации, как доступно, не раня детскую психику, рассказать о причине развода? Необходимо ли ему поддерживать отношения с ушедшим из семьи папой? Как объяснить ребенку приход нового мужчины в семью? На эти и многие другие вопросы вы получите квалифицированные советы и рекомендации, прочитав эту книгу, написанную практикующим детским психиатром Алевтиной Луговской.

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.

Книга посвящена проблеме социального предвидения в связи с современной научно-технической революцией и идеологической борьбой по вопросам будущего человечества и цивилизации.

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.