Синергетика. Основы методологии - [14]

Шрифт
Интервал

}, где α>i =Υр>i, позволяет вместо некоторой аддитивной меры, рассматривать метрический вектор единичной длины в евклидовом пространстве. В этом случае вся изложенная выше теория может быть переформулирована в терминах амплитуды вероятности.

Каждому множеству А из ξ(Ω) может быть поставлено в соответствие неотрицательное действительное число Аp(А). Это число называется амплитудой вероятности реализации совокупности исходов А. Оно определяется как корень квадратный из суммы квадратов амплитуд вероятности элементарных исходов, входящих в А:

где i>k — номера элементарных исходов, входящих в совокупность А>j. Ар(Ω) = 1. Если А и B не пересекаются, то [Ap(A+B)]>2 =[Ар(А)]>2 + [Ар(В)]>2.

Каждому множеству А>j, состоящему из m>j элементарных исходов бифуркационного события, соответствует некоторый m>j-мерный евклидов вектор Ар(А>j) = {a>jk} k = 1,…,m>j, модуль которого равняется

При этом разложение множества А>j на сумму взаимно не пересекающихся множеств эквивалентно разложению вектора

на сумму взаимно ортогональных векторов, каждый из которых имеет координаты, равные амплитудам элементарных событий, входящим в множество, которое он характеризует, е>j — орт координаты, характеризующей i-й элементарный возможный исход бифуркационного события.

Формула Байеса переписывается в терминах амплитуды вероятностей следующим образом:

3. Случайные величины и их связь с параметром целого. Комплексный волновой вектор

Пусть дана однозначная функция s(ω) исхода бифуркационного события ω. Тогда функция Р>s, определённая формулой Р>s(А) = Р{s>-1(A)}называется вероятностной функцией s, а функция АР>s амплитудой вероятностной функции s.

Функция F>s (S) = Р>s (-бесконечность, S) = Р {s(ω) < S} называется функцией распределения случайной величины s.

Если свойства состояний системы являются периодическими функциями от s, с периодом h, то назовём величину s действием и вместо величины s введём спиральную переменную, путём отображения прямой линии s на цилиндрическую круговую спираль с основанием цилиндра единичного радиуса.

Точка на этой спирали может быть описана спиральным комплексным числом с единичным модулем e>2ms/h. Проекцией каждого такого числа на комплексную плоскость является точка на окружности единичного радиуса, описываемая алгебраическим комплексным числом e >iθ.

Как величина действия s. так и величина периода действия h, могут быть приняты в качестве параметра целого при исследовании системы на ранних стадиях.

Следующим шагом в анализе бифуркационного события является введение в рассмотрение, по аналогии с действительным вектором вероятности, комплексного волнового вектора Ψ.

Рассмотрим первоначально компоненты этого вектора. Каждому элементарному исходу бифуркационного события (каждому элементу ω>i) сопоставим единичный вектор e>j направленный вдоль оси абсцисс комплексной плоскости z>i.. В этом случае можно ввести собственный волновой вектор данного исхода бифуркационного события

принимающий значения в любой точке единичного круга комплексной области z>i, включая его центр (в случае невозможности данного исхода) и окружность единичного радиуса (в случае неотвратимости наступления события). Наряду с этим вводим единичный комплексный собственный вектор.

Сумма комплексных волновых векторов для всего конечного множества возможных исходов формирует полный волновой вектор бифуркационного события, или волновой вектор возможных состояний системы.

4. Энтропия будущего и информация о прошлом бифуркационного события

В синергетической методологии существенную роль играют логарифмы вероятностей исходов бифуркационного события, совокупность которых для данной системы можно представить в виде собственных чисел некоторого оператора, названного нами оператором энтропии.

Осреднение собственных чисел оператора энтропии по всему пространству возможных исходов бифуркационного события позволяет получить некоторое число, которое может быть названо энтропией будущего этого события.

Это число даёт общее представление о степени неопределённости исходов бифуркационного событии и является важной характеристикой исследуемой системы.

Однако, величина энтропии зависит от нашего произвола в выборе вариантов элементарных исходов события, особенно в случае, если пространство возможных исходов представляет собой континуум. Поэтому этот параметр должен быть использован достаточно осторожно.

Более разумно принять несколько вариантов разбиений пространства возможных исходов события.

Для каждого варианта разбиения можно подсчитать своё значение энтропии и максимальное её значение, соответствующее равномерному распределению вероятностей различных вариантов исходов.

Различие между полученным значением энтропии для данной системы и максимальным её значением при данном числе разбиений характеризует доступную нам информацию о возможном поведении системы.

В качестве пространства разбиений для системы, поведение которой нельзя считать детерминированным, можно на первом этапе исследований принять область значений параметра целого. Если поведение системы с некоторым приближением можно считать детерминированным, то энтропия события, в котором участвует система, может быть принята равной нулю, и мы можем вернуться к исследованию объекта как детерминированной динамической системы.


Рекомендуем почитать
Звездные корабли воображения

Брошюра подписной научно-популярной серии "Новое в жизни, науке, технике" библиотечки "Космонавтика, астрономия" издательства "Знание", № 2 1988 г.Автор брошюры, ученый и известный писатель-фантаст, обсуждает роль научной фантастики в прогнозировании в области космонавтики и астрономия и сопоставляет некоторые приемы, используемые писателями-фантастами, с методами научно-технического прогнозирования.


Геракл — праотец славян, или Невероятная история русского народа

Существует легенда о происхождении скифов от связи Геракла с полуженщиной-полуехидной, приключившейся на берегах Днепра-Борисфена. Об этом писал еще отец истории Геродот. Упоминал об этом мифе и Лев Гумилев. Однако особенностью данной книги является углубленное изучение всех аспектов возможных причин возникновения этого мифа. В рамках своего труда автор проводит сенсационные параллели между Гераклом и героем древнерусских былин Ильей Муромцем, между библейским Эдемом и садом Гесперид, находит изображение Геракла на Збручском идоле и делает вывод, что Геродотовы будины, гелоны, навры — праславяне, поклонявшиеся Гераклу как богу.


Наблюдения НЛО в СССР (выпуски 1-3)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Тайна неизвестных летающих объектов

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Неоткрытые звезды

Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.


Александр Александрович Малиновский (Богданов)

Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.