Штурм абсолютного нуля - [21]
Один из способов измерения вязкости заключается в измерении скорости вытекания жидкости из капилляра под действием силы тяжести.
Скорость жидкости имеет наибольшую величину в средней части капилляра и убывает при приближении к стенке. Различные слои жидкости движутся с разными скоростями: между ними действуют силы трения, от величины которых зависит скорость вытекания.
Проведя тщательные эксперименты по измерению вязкости жидкости таким способом, Капица установил, что гелий II протекает через капилляры диаметром в сто тысячные доли сантиметра практически без сопротивления.
Для того чтобы повысить чувствительность метода, Капица заменил капилляр длинной узкой щелью шириной в полмикрометра, через которую можно было пропускать большие массы жидкости. Через такую щель гелий I протекал едва заметно, а гелий II преодолевал это препятствие за несколько секунд.
Измерения показали, что вязкость гелия II не превышает одну триллионную долю пуаза[4], что, по крайней мере, в десять тысяч раз меньше вязкости наименее вязкого из всех известных в природе веществ газообразного водорода.
Практически гелий II — жидкость с нулевой вязкостью.
Это открытое ученым в 1938 году замечательное свойство гелия II Капица назвал сверхтекучестью.
Пройдет сорок лет. Капица завершит свои исследования свойств гелия II. Но жизнь ставит перед пытливыми исследователями все новые задачи.
Капица исследует природу шаровой молнии, разрабатывает новое направление в технике — электронику больших мощностей, усиленно работает над проблемой номер один современной физики — освоением управляемых термоядерных реакций. В решении этих и многих других проблем он добивается выдающихся результатов. Заслуги ученого высоко оценены советским правительством и мировой научной общественностью. Дважды ему присуждается Государственная премия I степени. Он дважды Герой Социалистического Труда. Международные награды: золотая медаль Ломоносова, премия Максвелла, медаль Фарадея, Большая золотая медаль Франклина, золотая медаль Нильса Бора и другие.
О своих криогенных исследованиях Капица, по собственному полушутливому признанию, начал забывать.
…В один из осенних дней 1978 года на стол директора Института физических проблем референт, как обычно, положил увесистую кипу корреспонденции. Тут свежие номера отечественных и зарубежных научных журналов, письма зарубежных коллег, многословные служебные циркуляры… Среди них не сразу можно было разглядеть небольшой телеграфный бланк.
Вот что выстучал бесстрастный телетайп:
«Дорогой академик Капица!
Мне доставляет удовольствие сообщить Вам, что Шведская королевская академия наук решила сегодня присудить Нобелевскую премию по физике в двух равных частях. Одну часть решено присудить Вам за Ваши фундаментальные исследования в области физики низких температур, а другую часть поровну разделить между доктором Арно Пензиас и доктором Робертом Уилсоном (США) за открытие ими фонового микроволнового излучения из космоса.
О. Б. Бернард, генеральный секретарь».
Вернемся, однако, к дням, ставшим ныне достоянием истории.
В то время, когда Капица у себя в лаборатории наблюдал, как через узкую щель с почти молниеносной быстротой проскакивал проворный гелий II, канадские физики из Торонто исследовали вязкость этого вещества другим способом, который заключается в измерении времени затухания крутильных колебаний диска, подвешенного на упругой струне в жидком гелии.
Жидкость вблизи диска увлекается его движением, а вдали практически находится в состоянии покоя. Различные слои жидкости перемещаются с разными скоростями, и возникающая при этом сила внутреннего трения приводит в конце концов к тому, что энергия колебаний превращается в тепло. Зная время затухания колебаний диска, можно определить вязкость.
Эксперименты, проведенные канадскими физиками, показали, что гелий II имеет вполне определенную и измеряемую вязкость.
В чем же здесь дело?.. Неужели это потому, что климат в Канаде отличается от московского?
Капица повторяет эксперименты своих канадских коллег, и крутильные колебания диска затухают с такой же интенсивностью, как и в далеком Торонто.
Это, пожалуй, единственный случай в науке, когда измерения одной и той же физической величины разными методами дали диаметрально противоположные результаты.
Выходит, что гелий II имеет вязкость и… не имеет вязкости.
Неожиданным был результат и следующего опыта Капицы.
Гелий II выпускали из сосуда через узкую щель. Оказалось, что жидкость в сосуде каким‑то непостижимым образом нагревается, а вытекающий гелий, наоборот, охлаждается. Создавалось впечатление, что гелий II, покидая сосуд, «великодушно» оставляет там свое тепло.
Поиски истины упорно продолжались…
В замкнутом сосуде, частично заполненном гелием II, установлен нагреватель. Этот сосуд имеет единственный выход в окружающий гелий II. За выходным отверстием сосуда расположен лепесток. При включении нагревателя возникает движение гелия II. Действительно, лепесток отклоняется, показывая, что жидкость на самом деле вытекает из сосуда. Самое поразительное заключается в том, что при этом уровень жидкости в сосуде не понижается. Можно проводить опыт как угодно долго, а лепесток все время будет отклонен. Как из сказочного рога изобилия, жидкость все время вытекает, а ее количество не изменяется.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.