Шаг за шагом. Транзисторы - [6]
Чем больше напряжение, тем больше ток, тем интенсивнее движение свободных зарядов. Об этом и говорит первая часть закона Ома: «Ток I прямо пропорционален напряжению U…»
На второй части закона — «ток I обратно пропорционален сопротивлению R» — мы остановимся более подробно. Хотя бы потому, что само слово «сопротивление» — «резистор» — входит (и не случайно!) в имя нашего главного героя.
Сопротивление, а точнее, электрическое сопротивление представляет собой характеристику какого-либо элемента или участка электрической цепи, подобно тому как диаметр труб является характеристикой нефтепровода, угол наклона — характеристикой шоссейной дороги, концентрация молекул — характеристикой газа. О каких же свойствах участка электрической цепи (или всей цепи в целом) говорит величина сопротивления? Сопротивление говорит о том, насколько большой ток может возникать на участке цепи под действием напряжения.
Если в двух разных участках электрической цепи под действием одного и того же напряжения возникают разные токи, то это может быть только потому, что сопротивление участков различно.
Существует еще одна характеристика цепи, которая называется проводимостью и представляет собой величину, обратную сопротивлению. О каком-либо участке цепи можно сказать, что у него малая проводимость, или, что то же самое, большое сопротивление. Проводимостью иногда пользуются при описании или расчете электрических цепей.
Упростив картину, можно сказать, что сопротивление какого-либо элемента цепи зависит от того, сколько в нем свободных зарядов. Если в участке цепи нет свободных зарядов, то по ней ток не пойдет. Да и какой может быть ток, если некому двигаться! Цепь разорвана, в нее включен изолятор, сопротивление которого бесконечно велико. Чем больше свободных зарядов в проводящем участке цепи, тем большим будет ток при одном и том же напряжении, тем, иными словами, меньше сопротивление этого участка цепи. Именно в этом смысле и нужно понимать вторую часть закона Ома: «…ток обратно пропорционален сопротивлению». А если вам понадобится определить сопротивление участка цепи, то для этого можно воспользоваться простой расчетной формулой, вытекающей из закона Ома (Воспоминание № 3).
Закон Ома говорит о том, что при неизменном сопротивлении R>вх величина тока I>вх зависит только от напряжения U>сиг. Увеличивается напряжение — растет и ток, уменьшается напряжение — и в такой же степени падает ток. А это значит, что график тока I>сиг будет точной копией графика U>сиг. Поэтому понятие «электрический сигнал» в данном случае относится в равной степени и к напряжению, и к току, к этим спаренным характеристикам единого процесса.
Мы постепенно приближаемся к тому, чтобы выяснить, как работает транзисторный усилитель, как он усиливает слабый электрический сигнал. Но еще до этого нам предстоит задуматься над тем, что должно возрасти в результате усиления сигнала — ток или напряжение? Ответить на этот вопрос по существу не просто, и в поисках ответа нам придется еще раз оглянуться назад.
Кроме закона Ома, есть еще одно очень важное соотношение, без понимания которого нечего и думать о знакомстве с электрическими цепями и тем более с электронными усилителями. Это соотношение касается мощности: электрическая мощность Р равна произведению напряжения U на ток I (Воспоминание № 4). Строго доказать справедливость этого равенства не составляет труда, но для экономии времени мы докажем его с помощью нескольких упрощенных рассуждений.
Мощность — это работа, выполняемая за единицу времени. Единица мощности ватт (вт) соответствует работе в 1 джоуль (дж), которая выполнена за 1 секунду (сек).
Теперь о напряжении и токе.
Электрическое напряжение — например, напряжение на каком-либо резисторе — говорит о том, какую работу выполнит электрический заряд, пройдя по этому резистору. Если заряд в 1 кулон (к) (для того чтобы получить такой единичный заряд, достаточно собрать вместе 6,3·10>18 электронов) пройдет по участку цепи, на котором действует напряжение в 1 вольт (в), то этот заряд совершит работу 1 джоуль (дж).
Приложите к тому же участку цепи напряжение 5 в, и работа, которую совершит каждый движущийся заряд, также увеличится в пять раз.
Что же касается тока, то его величина показывает, насколько интенсивно, насколько быстро и «густо» заряды двигаются по цепи. Чем больше зарядов проходит через какое-либо условное сечение цепи за единицу времени, тем больше ток.
Единица тока — ампер (а) — соответствует одному кулону (6,3·10>18 электронов), проходящему через это условное сечение за одну секунду.
Итак, напряжение — это работа, совершаемая одним кулоном, а ток — число кулонов в секунду. Для того чтобы подсчитать мощность Р — полную работу, выполненную за секунду, — нужно работу одного кулона умножить на число работавших кулонов, то есть нужно напряжение U умножить на ток I.
Кстати, если увеличить напряжение на участке цепи в два раза, то выделяемая на этом участке мощность возрастет в четыре раза. И это вполне понятно: увеличение напряжения в два раза само по себе увеличит мощность в два раза да еще (согласно закону Ома!) вдвое увеличит ток в цепи. А увеличение тока приведет к тому, что мощность возрастет еще в два раза. Поэтому мы и получим увеличение мощности в четыре раза, и попробуйте против этого возразить!
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.