Шаг за шагом. Транзисторы - [18]
Рис. 21.При нагревании диода увеличивается число собственных (неосновных) зарядов в полупроводнике, увеличивается обратный ток через рn-переход.
То, что у кремниевых диодов это происходит при более высокой температуре, можно объяснить (опять-таки очень упрощенно!) следующим образом. У кремния всего три орбиты, у германия — четыре. Поэтому в атоме кремния внешняя орбита находится ближе к ядру, электроны прочнее привязаны электрическими силами к ядру и нужна более высокая температура, более сильные тепловые колебания атома, чтобы выбросить электрон с его внешней орбиты.
Для того чтобы не перегреть полупроводниковый диод, не довести его до опасной граничной температуры, пользуются охлаждающими радиаторами, например медными, алюминиевыми или стальными пластинами. Роль радиатора может выполнять и металлическое шасси, на котором монтируется схема. Радиатор должен плотно прилегать к корпусу диода: лишь в этом случае диод хорошо передает ему свое тепло. Если же нужно, чтобы корпус диода (к нему подсоединена зона n, см. рис. 14) не имел электрического контакта с металлическим радиатором (чаще всего с шасси), то между диодом и радиатором помещают тонкую слюдяную прокладку.
Диоды большой и даже средней мощности без радиаторов вообще не используют, так как при этом у них очень резко, иногда в два-три раза, уменьшаются допустимый прямой ток I>пр-доп и допустимое обратное напряжение U>обр-доп. А плоскостные диоды малой мощности, для которых не нужны радиаторы, при монтаже стараются располагать так, чтобы обеспечивалось их хорошее охлаждение. Более того, даже при пайке выводов полупроводникового прибора нужно остерегаться его перегрева. Паять нужно быстро, аккуратно, предварительно зажав вывод пинцетом или плоскогубцами, которые в данном случае играют роль теплоотвода (рис. 22).
Рис. 22.Перегрев при пайке или превышение подводимой мощности может привести к гибели диода.
Влияние температуры на работу полупроводникового диода, а в дальнейшем и триода доставит нам еще немало хлопот, и мы еще не раз будем возвращаться к этой неприятной теме.
Прямое напряжение U>пр, при котором через диод проходит допустимый прямой ток I>пр-доп, так же как и обратный ток I>обр, соответствующий допустимому обратному напряжению U>обр-доп, — параметры также довольно близкие для больших групп диодов. Так, для плоскостных диодов прямое напряжение, как правило, составляет 0,3–0,5 в. Как видите, прямое напряжение у плоскостных диодов весьма мало. Несколько больше, но тоже невелико прямое напряжение U>пру точечных диодов.
Обратный ток I>обр при напряжении U>обр-доп у плоскостных диодов обычно составляет 0,5–1,5 ма (то есть 500—1500 мка), а у точечных диодов 0,01—0,2 ма (10—200 мка). Во всех случаях обратный ток через диод даже при предельно допустимом обратном напряжении весьма мал. Во всяком случае, обратный ток всегда во много раз меньше прямого.
Зная токи и напряжения, легко подсчитать прямое и обратное сопротивление диода (R = U: I). Для плоскостных диодов прямое сопротивление обычно очень мало — оно составляет всего 0,1–3 ом (!), а обратное 50—500 ком или даже несколько Мом. Прямое сопротивление точечных диодов чаще всего лежит в пределах от 10 до 100 ом, обратное — от 1 до 10 Мом. Цифры эти полезно запомнить: в дальнейшем они позволят понять, что именно почувствует та или иная электрическая цепь при включении в нее диода.
У нас остался еще один неоплаченный долг — еще один вопрос, который возник при знакомстве с вольтамперной характеристикой диода (стр. 46): с чем связано появление двух изогнутых участков, двух загибов характеристики в районе нулевого напряжения? В поисках ответа нам придется еще раз внимательно посмотреть, что происходит в рn-переходе, причем не при прямом его включении и не при обратном, а в том случае, когда диод вообще никуда не включен, когда он предоставлен самому себе.
А действительно, как ведет себя рn-переход, когда к нему не приложено никакого напряжения? Начнем с того, что такого случая почти никогда не бывает. Даже если к рn-переходу не подключать батареи, то и в этом случае на нем будет действовать небольшое, если можно так сказать, «самодельное» напряжение. Чтобы пояснить, откуда оно берется, нам придется упомянуть еще об одном физическом явлении — о диффузии. С этим явлением, так же, скажем, как с возникновением примесной проводимости или с влиянием температуры на свойства полупроводника, мы будем довольно часто сталкиваться при знакомстве с полупроводниковыми триодами.
Если в каком-нибудь углу комнаты поставить банку с легко испаряющимся бензином, то его запах через некоторое время заполнит все помещение. Если в стакан чистой воды попадет капля туши, то пройдет несколько минут, и вся вода в стакане почернеет. Если в полупроводниковый кристалл насильно ввести некоторое количество свободных электронов, то вскоре они равномерно распределятся во всем объеме кристалла. Все три примера иллюстрируют хорошо известное физическое явление — диффузию.
Сущность ее состоит в том, что частицы — молекулы, атомы, электроны, — совершая свои обычные хаотические движения, постепенно передвигаются из районов с большой концентрацией в те районы, где этих частиц мало. Диффузия в том и состоит, что вещество старается распределиться равномерно в занимаемом объеме. Можно найти ей немало житейских аналогий, вспомнив, например, как люди равномерно размещаются на огромном пляже.
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.