Шаг за шагом. Транзисторы - [10]
Уже говорилось, что электрическое сопротивление того или иного элемента электрической цепи, а значит, и вещества, из которого этот элемент сделан, зависит от количества свободных электрических зарядов в нем. Еще очень давно все вещества по их электрическим свойствам разделили на две группы: проводники (металлы, целый ряд растворов, газы в определенном состоянии) и изоляторы, или диэлектрики (стекло, резина, дерево и масса других веществ). Такое деление, разумеется, не отражает многих сложных процессов, с которыми связано появление свободных электрических зарядов. И все же, рассматривая атом в упрощенном виде, попытаемся выяснить, чем проводники отличаются от изоляторов.
Главная особенность всякого твердого проводника состоит в том, что у огромного числа его атомов электроны убежали (см. примечание на стр. 26) с внешних орбит и гуляют в межатомном пространстве. Обычно электроны легче всего срываются с внешней орбиты в том случае, когда их на этой орбите мало. У атомов таких прекрасных проводников, как медь и серебро, на внешней орбите всего по одному электрону, у цинка и ртути — по два, у атомов алюминия — три электрона.
Атомы изолятора, напротив, очень устойчивы. Электроны в них прочно связаны с ядром и своих орбит не покидают. Конечно, нет правил без исключения. Бывает, что и в изоляторе какой-нибудь электрон нарушит дисциплину и сорвется со своей орбиты. В разных изоляторах среднее число таких нарушений неодинаково — изоляторы бывают хорошими и плохими, а идеальных изоляторов вообще нет.
Выскакивание электронов из атома — это результат его тепловых колебаний. Чем выше температура, тем энергичнее колеблется атом на своем месте в кристаллической решетке, тем больше вероятность выскакивания его электронов с внешней орбиты. Лишь при температуре абсолютного нуля (—273,2 °C) тепловые колебания атомов полностью прекращаются, и в любом изоляторе, даже в самом плохом, вообще не оказывается свободных зарядов.
Для того чтобы не пользоваться такими расплывчатыми понятиями, как «хороший» и «плохой», можно организовать точный учет электронов, которые, срываясь со своих орбит, блуждают в межатомном пространстве изолятора.
Вырежем из проверяемого изоляционного материала кубик со стороной 1 см, подведем к нему напряжение в 1 в и будем измерять ток в созданной нами электрической цепи (рис. 10).
Рис. 10.Проводники, полупроводники и изоляторы в основном различаются количеством и подвижностью свободных электрических зарядов.
Если кубик сделан из идеального изолятора, в котором ни один электрон не покидает своей орбиты, то свободных зарядов в кубике не будет, а значит, не будет и тока в цепи. В цепи, куда включен реальный изолятор, ток обязательно появится, и чем хуже изоляционные свойства кубика, чем больше в нем электронов-нарушителей, тем больше этот ток.
Для начала включим в нашу испытательную цепь кубик из чистого каучука. Прибор покажет ток 1 пикоампер, то есть 0,000 000 000001 ампера. Легко подсчитать (нужно лишь вспомнить, что 1 а = 1 к/1 сек и 1 к = 6,3·10>18 зарядов электрона), что при таком токе через поперечное сечение каучукового кубика ежесекундно проходит около 6 300 000 свободных электронов. Пусть вас не пугает эта цифра — она не так уж велика. Если бы мы испытывали кубик из проводника, например, из серебра, то ток в цепи достиг бы 1000 000 ампер, и каждую секунду через поперечное сечение серебряного кубика проходило бы 6 300 000 000 000 000 000 000 000 свободных электронов. В сравнении с этой астрономической цифрой число свободных электронов в каучуковом кубике, конечно, очень мало, и его смело можно считать изолятором.
Согласитесь, что не очень удобно каждый раз подсчитывать число свободных электронов, двигающихся в кубике проверяемого материала. Во всяком случае, это не принято — вместо того чтобы считать заряды, обычно вычисляют электрическое сопротивление кубика. Сделать это довольно просто. Мы знаем напряжение U, подведенное к кубику (1 в), знаем ток I, который по нему проходит, а значит, можем по одной из формул закона Ома (рис. 10) подсчитать и сопротивление R. Полученную величину называют удельным сопротивлением, подобно тому как удельным весом называют вес одного кубического сантиметра вещества. Величина удельного сопротивления — она измеряется в омах на сантиметр (ом·см) — показывает, какое сопротивление имеет сделанный из того или иного материала кубик с ребром в 1 см.
Удельное сопротивление четко характеризует изоляционные свойства материала, дает представление о наличии в нем свободных зарядов и, в частности, о «свободолюбии» (см. примечание на стр. 26) входящих в атомы электронов. Чем меньше свободных зарядов в том или ином веществе, тем хуже оно проводит электрический ток, или, если говорить об этом другими словами, тем больше удельное сопротивление вещества.
В арсенале природы имеются вещества с самым различным значением удельного сопротивления — от миллиарда миллиардов ом до миллиардных долей ома.
Еще недавно их делили на две группы, и условная граница между ними проходила где-то в районе удельного сопротивления 0,01 —100 ом·см. Все вещества с большим сопротивлением относили к изоляторам, а с меньшим — к проводникам.
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.