Сейчас. Физика времени - [61]

Шрифт
Интервал

и пренебрежением опережающего потенциала.

Именно это заставило многих ученых уверовать, что явление классического излучения, присутствующее в физике (не только свет, но и водяные волны, звуковые и волны землетрясений), определяет направление стрелы времени. Действительно, в приведенных мной примерах уменьшения локальной энтропии (например, при изготовлении чашки или строительстве здания) эмитированное излучение тоже отвечает за уменьшение энтропии, унося ее больше, чем восстанавливая. Таким образом, излучение задает направление стреле.

Ритц понимал, что уравнения электромагнетизма, в особенности ясные примеры расчета излучения, содержали «встроенное» направление времени. Эйнштейн утверждал, что это не так. Кажется странным, что спор разгорелся вокруг математики. На самом деле проблема была не в математике, а в том, как ее интерпретировать. Спор между двумя учеными приобрел общественный характер. Он выплеснулся на страницы нескольких статей в очень известном научном журнале Physikalische Zeitschrift[158]. Редактор попросил обоих физиков опубликовать совместное письмо, поясняющее суть спора. Ритц и Эйнштейн написали статью, которая была расценена публикой как их «согласие в несогласии друг с другом». Дискуссия шла вокруг включения в уравнения опережающего потенциала – той их части, которая, казалось, предсказывала излучению, что собирался делать колеблющийся электрон. Ритц сказал, что такое включение «не физично»; Эйнштейн же утверждал, что в качестве теории опережающий потенциал должен быть включен.

Когда я размышляю над этим спором двух ученых в ретроспективе, мне кажется, Ритц был движим прежде всего теми выводами, к которым он хотел прийти, а не убедительными математическими фактами. Он не был тогда еще убежден, что сравнительно новая по тем временам теория относительности была правильной, а имя ее автора не стало пока синонимом гениальности. До этого было еще несколько лет. Эйнштейн же оставался объективным. Кажется странным, что он не разработал математику этого вопроса. Она оставалась нетронутой до тех пор, пока молодой студент Ричард Фейнман не представил соответствующую работу Эйнштейну.

Достижения Фейнмана

В 1945 году Ричард Фейнман, начинающий молодой ученый (даже еще без степени доктора наук), только закончил работу в Манхэттенском проекте. Он утверждал, что был единственным, кто нарушил данный всем приказ и открыл глаза в момент первого испытательного атомного взрыва в Нью-Мексико (разумеется, он смотрел через затемненный фильтр). Научный руководитель диссертации Фейнмана в Принстоне, Джон Уилер[159], предложил молодому ученому заняться изучением асимметрии в выводе уравнения излучения и выяснить, может ли излучение быть рассчитано с использованием опережающего потенциала с таким же успехом, как и потенциала запаздывающего. Тогда такое предложение было равносильно вопросу о том, может ли знание будущего быть использовано для предсказывания прошлого. Требуют ли уравнения классического излучения, чтобы время двигалось вперед, или излучение может быть даже обращено назад?

Фейнману удалось аргументировать, что уравнения работали как с опережающим, так и с запаздывающим потенциалами. Этот результат подтвердил позицию Эйнштейна. Он показал, что уравнения для излучения симметричны во времени, никакой первичной стрелы не существовало. И вывод, и доказательства стали блестящим достижением молодого докторанта и предвестником великих дел, которые Фейнман еще должен был совершить, – включая его пересмотр квантовой физики и интерпретацию антивещества как вещества, движущегося во времени в обратном направлении.

Уилер был очень доволен работой Фейнмана и попросил его выступить с сообщением на еженедельном семинаре, который организовал Юджин Вигнер[160] – физик, чей математический гений создал основание для большей части современной теоретической физики. Для Фейнмана это было первое подобное выступление, и он согласился, хотя перспектива читать лекцию самому Вигнеру пугала. Затем Уилер сказал молодому ученому, что пригласил также Генри Рассела[161], знаменитого своим вкладом в развитие теории звезд и теории атомов. Фейнман занервничал еще больше. Но это оказалось не все. Среди приглашенных был и Джон фон Нейман[162], один из выдающихся гениев науки своего времени, который внес огромный вклад в развитие не только физики и математики, но и статистики, цифровой информатики и экономики. И, что было уж совсем плохо, – Уилер пригласил также Вольфганга Паули[163], одного из основателей современной физики, великого ученого квантовой эры, создателя принципа запрета Паули, которым объяснялась стабильность атомов. Он был известен своей острой и уничижающей критикой научных работ, которые считал ошибочными, его иногда даже называли «совестью физики». Фейнман готовился к самому худшему.

И это произошло. Приглашение на семинар принял Эйнштейн.

Фейнман рассказывал, что находился в полном отчаянии. В своей книге Surely You’re Joking, Mr. Feynman[164] он вспоминал: «И вот передо мной сидят в ряд величайшие умы современности». Уилер пытался успокоить Фейнмана ободряющими словами: «Не волнуйся, я сам отвечу на все вопросы».


Рекомендуем почитать
Инквизиция и инквизиторы во Франции

После Альбигойского крестового похода — серии военных кампаний по искоренению катарской ереси на юге Франции в 1209–1229 годах — католическая церковь учредила священные трибуналы, поручив им тайный розыск еретиков, которым все-таки удалось уберечься от ее карающей десницы. Так во Франции началось становление инквизиции, которая впоследствии распространилась по всему католическому миру. Наталия Московских рассказывает, как была устроена французская инквизиция, в чем были ее особенности, как она взаимодействовала с папским престолом и королевской властью.


Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.