Сейчас. Физика времени - [60]

Шрифт
Интервал

Несмотря на эти сходства, я считаю модель, при которой стрела времени определяется энтропией информации, гораздо более приемлемой, чем та, в которой действует теория энтропии Эддингтона. Чего нам не удалось достичь – так это даже оценить информационную энтропию человеческого мозга, а также понять, увеличивается она с течением времени или уменьшается. (Если эта энтропия превращает набор нулевых бит в смесь единиц и нулей, тогда нельзя исключать, что память – это увеличение энтропии.) Наша память, безусловно, постоянно реорганизуется, и мы все время стараемся воспринять самое главное и научиться ему. Однако никто еще не изобрел действенного способа измерения важности информации, и скорее всего, это-то и будет ключом к тому, чтобы сделать эту теорию подлинно жизнеспособной.

Стрела черной дыры

Многие объекты в нашей Вселенной воспринимаются как уже существующие или почти сформировавшиеся черные дыры. Они включают в себя «небольшие» объекты, которые в этом контексте, как считается, всего лишь в несколько раз тяжелее Солнца (такие размеры приняты как малые только в астрономии), и довольно большие объекты – массивные черные дыры в центрах галактик, которые весят (разумеется, этот глагол используется здесь метафорически) как миллион, а то и миллиард солнечных масс.

Бросьте что-нибудь в черную дыру, и этот предмет никогда не вернется. Вещи падают туда, а не обратно. Недавнее теоретическое предсказание, что черные дыры могут испускать какое-то излучение, не изменяет этой асимметрии. Для большинства массивных черных дыр такое излучение настолько незначительно, что им просто можно пренебречь. К тому же оно исходит не с поверхности самой черной дыры, а из районов, которые несколько отстоят от нее. Так что, наблюдая падение объектов в черные дыры, можно определять направление стрелы времени.

В течение многих лет Стивен Хокинг считал, что падение объектов в черную дыру нарушало второй закон (начало) термодинамики. Причиной было то, что любой объект, оказывающийся там, фактически исчезает из Вселенной, унося с собой свою энтропию и заставляя энтропию Вселенной казаться уменьшающейся. Я никогда не находил этот аргумент убедительным: для него не нужен пример черной дыры, поскольку если фотон улетает в бесконечность, это тоже приводит к потере энтропии в наблюдаемой Вселенной. (Вы больше никогда с этим фотоном не встретитесь.) В конце концов Хокинг изменил свою точку зрения. Его ученик Яаков Бекенштейн убедил учителя, что черные дыры сами содержат энтропию и, когда в них нечто попадает, их энтропия увеличивается. Таким образом (когда вы включаете этот компонент в рассуждения), энтропия Вселенной все-таки увеличивается, и второй закон оказывается спасенным.

Так что же все-таки относительно стрелы черной дыры? Она не выдерживает тщательного анализа. Главная причина в том, что любой объект, измеренный в системе отсчета Земли, а не черной дыры, никогда ее не достигнет. Я говорил об этом в главе 7. Так что в пределах любого конечного промежутка времени (измеренного в системе отсчета Земли) объект, падающий в черную дыру, скорее всего, может вернуться.

Такая возможность избежать падения формализуется постулированием существования белых дыр. Это повернутая во времени вспять дыра черная. Согласно уравнениям общей теории относительности, они действительно могут существовать. Но существуют ли? Насколько мы знаем, нет. Но возможность их реальности показывает, что в уравнениях черных дыр нет изначальной асимметрии времени – во всяком случае, в нашей собственной СО. И эта система отсчета остается такой, в которой направление стрелы времени – загадка.

Стрела излучения

Небольшая нестыковка, случившаяся в классической теории электромагнетизма, в начале 1900-х годов послужила причиной спора между Вальтером Ритцем[156], видным швейцарским физиком, и Альбертом Эйнштейном. Спор возник по поводу известного факта, что колебания электрона порождают электромагнитные волны. Это то, что мы делаем с радиоантенной: заставляем электроны передвигаться взад-вперед по куску проволоки, и в процессе этого движения возникают радиоволны. Если смотреть на микроскопическом уровне, то любой горячий объект (например, разогретая вольфрамовая нить в электрической лампочке) наполнен горячими электронами, которые колеблются с большой частотой. Этим и объясняется то, что объекты светятся ярко-красным или даже белым светом. Колеблющиеся электроны генерируют высокочастотные электромагнитные волны, которые мы называем видимым светом.

Эмиссия такого излучения может быть рассчитана с использованием классических уравнений Максвелла, однако для этого нужно иметь представление о направлении времени. Именно отсюда родилась идея, что излучение может определять направление времени. Посмотрите разделы об электромагнетизме в сегодняшних учебниках физики для старших школ и колледжей. Уравнение, описывающее излучение, названо в честь человека, который впервые вывел его в 1897 году, ирландского физика Джозефа Лармора[157]. Утверждается, что для его выведения необходим ввод принципа причинности, то есть требуется (так написано в большинстве учебников, которые я видел) признать, что колебания электронов происходят до возникновения излучения. Причинность открыто вводится включением в уравнение того, что называется


Рекомендуем почитать
Инквизиция и инквизиторы во Франции

После Альбигойского крестового похода — серии военных кампаний по искоренению катарской ереси на юге Франции в 1209–1229 годах — католическая церковь учредила священные трибуналы, поручив им тайный розыск еретиков, которым все-таки удалось уберечься от ее карающей десницы. Так во Франции началось становление инквизиции, которая впоследствии распространилась по всему католическому миру. Наталия Московских рассказывает, как была устроена французская инквизиция, в чем были ее особенности, как она взаимодействовала с папским престолом и королевской властью.


Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.