Сейчас. Физика времени - [28]

Шрифт
Интервал

Тем временем Эйнштейн продолжал свои поразительно продуктивные разработки. Вскоре после создания первых трудов по общей теории относительности он написал несколько работ по радиационному излучению, в которых предсказал прежде не известное явление – вынужденное, или индуцированное, излучение. Это привело в 1954 году к изобретению лазера известным американским физиком Чарльзом Таунсом[86] и советскими физиками Николаем Басовым[87] и Александром Прохоровым[88]. Собственно, слово «лазер» – это английская аббревиатура: L.A.S.E.R., light amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения».

Эйнштейн считал свою специальную теорию относительности, опубликованную в 1905 году, первым шагом на пути к пониманию всей физики через геометрию. С помощью принципа эквивалентности он включил в СТО гравитацию, создав общую теорию относительности – геометрическую теорию тяготения. И не собирался на этом останавливаться. Эйнштейн хотел сделать электромагнетизм геометрической теорией, так же как он поступил с гравитацией, и объединить теорию электромагнетизма излучения с общей теорией относительности. В 1928 году он начал писать ряд статей, посвященных «единой теории поля», с помощью которой планировал добиться своей цели. Сегодня многие ученые считают, что в конечном счете Эйнштейн пошел по неверному пути; возможно, потому что в свои исследования не включил квантовую физику, которую сам же некогда помог создать.

С принятием квантовой физики многие теоретики верят, что приблизились к решению задачи создания единой теории, хотя она и не основана на геометрическом подходе. Этот подход, названный теорией струн, объединяет общую теорию относительности и квантовую физику, сводя в один предмет изучение силы гравитации, электричества и магнетизма; «слабые» взаимодействия, которые вызывают радиоактивный распад; и «сильные» взаимодействия, которые удерживают протоны и нейтроны в ядре, несмотря на существующие между ними гигантские силы отталкивания.

Теория струн вызвала в научной среде большой энтузиазм. На эту тему появилось много популярных изданий. По моей оценке, эта теория не стала тем решением, которое мы ищем. На ее основе сделано много предсказаний (насчет существования новых частиц), которые пока не подтверждаются. С другой стороны, теория струн не предугадала многих явлений, оказавшихся реальностью. Некоторые ученые утверждают, что самым убедительным доказательством правильности можно назвать ее математическую последовательность и отсутствие произвольных (и трудных для оправдания) вычислительных хитростей ради избежания бесконечностей, присутствующих в классической квантовой физике. Некоторые говорят, что величайшим достижением теории струн стало ее «предсказание существования гравитации». Разумеется, гравитация была известна задолго до возникновения этой теории. Однако «предсказание» отражает то, что теория струн нуждается в существовании относительно слабых (в сравнении с другими силами) гравитационных полей.

* * *

Даже без каких-либо теоретических дополнений вскоре после публикации работ Эйнштейна удивительные явления были обнаружены в самой общей теории относительности. Эта теория может быть применена по отношению и к Вселенной, и к очень плотным объектам. По мнению Роберта Оппенгеймера[89], будущего научного руководителя Манхэттенского проекта и «отца» атомной бомбы, черная дыра создается, когда исключительно тяжелая звезда подвергается коллапсу. Действительно, существует мнение, что ближайшая к Земле черная дыра находится «всего лишь» (по оценкам астрономов) на расстоянии 6000 световых лет от нашей планеты. Теоретическое изучение черных дыр заставило по-новому взглянуть на время. Этот новый взгляд бросает вызов многим врожденным предубеждениям.

Глава 7

В бесконечность и далее

Время, текущее поблизости от черных дыр, намного необычнее, чем большинство из нас думает…

В бесконечность и далее!

Базз Лайтер, «История игрушек»[90]

Физики часто бывают ошарашены собственными уравнениями. Из них нередко трудно сразу сделать какие-то выводы, даже если они носят эпохальный характер. Чтобы помочь себе разобраться в своих же математических построениях, они обращают внимание на исключительные примеры и смотрят, что в итоге получается. А в нашей Вселенной нет более исключительных и экстремальных примеров, чем черные дыры. Их изучение вооружает нас очень важными идеями относительно особых аспектов времени.

Если вы кружите по орбите над небольшой черной дырой (скажем, массой с наше Солнце) на приличном расстоянии – например, 1500 километров, – то не почувствуете ничего особенного. Вы находитесь на круговой орбите над массивным объектом, увидеть который не можете. На орбите испытываете невесомость, как и все астронавты. Вас не засасывает внутрь дыры. Черные дыры, в отличие от изображаемых в научной фантастике, не втягивают в себя. На такой близкой орбите от Солнца за миллионную долю секунды вы были бы уже внутри светила, но до этого моментально сгорели бы. Однако черная дыра темна. (Микроскопически малые черные дыры испускают излучение, но большие не выпускают наружу ничего.)


Рекомендуем почитать
Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


О науке без звериной серьёзности

О чем это? • о ключевых словах современной науки; • о самых страшных экспериментах; • о сущности цивилизации. «Любому человеку нужен просто разговор – о важном, научном. Это задача научных журналистов. И один из самых ярких, самых ясных, самых ответственных – Григорий Тарасевич». Александр Архангельский, телеведущий, писатель, профессор Высшей школы экономики «…Книга вызывает множество противоречивых чувств: с рядом моментов хочется спорить, от большинства историй смеялась в голос, а от некоторых глав становилось безумно грустно».


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.