Семантическая концепция истины и основания семантики [заметки]

Шрифт
Интервал

1

Tarski A. The Semantic Conception of Troth and the Foundations of Semantics // Philosophy and Phenomenologicai Reseach, 1944, v. 4, n. 3, pp. 341-375. Перевод выполнен А. Л. Никифоровым. – Прим. ред.

2

Ср.: Tarski A. (1935) (см. список литературы в конце статьи). В этой работе дано более подробное и формальное изложение предмета настоящей статьи, в частности, материала, включенного в разделы 6 и 9-13 Она содержит также ссылки на мои более ранние публикации по проблемам семантики (сообщение на польском языке, 1930; статья: Tarski A. (1931) на французском языке; сообщение на немецком языке, 1932; и книг на польском языке, 1933). Описательная часть настоящей статьи по своему характеру близка к работе: Tarski A. (1936). Мои исследования, касающиеся понятия истины и теоретической семантики, были отрецензированы или обсуждены в работах: Hofstadter A. (1938), Juhos В. van (1937), Kokoszynska M. (1936a), (1936b), Kotarbinski Т. (1930), Scholz H (1937) Wein-bergJ. (1942) и т. д.

3

Можно надеяться, что теперь интерес к теоретической семантике будет возрастать благодаря недавней публикации важной работы Карнапа [Carnap R. (1942)].

4

Это относится, в частности, к публичным дискуссиям на 1-ом Международном конгрессе по единству науки (Париж, 1935) и на Конференции Международных конгрессов по единству науки (Париж, 1937); см., например: Neurath О. (1935), Gonseth F. (1938).

5

Слова notion и concept в данной статье употребляются со всей той неопределенностью и двусмысленностью, с которыми они используются в философской литературе. Так, иногда они относятся просто к термину, иногда – к тому, что подразумевается под термином, а в иных случаях – к тому, что обозначается термином. Иногда неважно, какая из этих интерпретаций имеется в виду, в определенных случаях ни одна из них, может быть, не является адекватной. Хотя в принципе я придерживаюсь тенденции избегать этих слов в точном анализе, я не вижу необходимости делать это в данном неформальном изложении.

6

Для наших настоящих целей несколько более удобно под выражениями, предложениями и т. п. понимать не конкретные записи, а классы записей сходной формы (т. е. не конкретные физические вещи, а классы таких вещей).

7

Аристотелевскую формулировку см. в: Aristotle (1908), фрагменты 7, 27. Другие две формулировки очень распространены в литературе, однако мне неизвестно, кому они принадлежат. Критическое рассмотрение различных концепций истины можно найти, например, в работах: Kotarbinski Т. (1929) (до сих пор издана только на польском языке), р. 123ff; Russell В, (1940), р. 362ff.

8

За большую часть замечаний, содержащихся в разделах 4 и 8, я обязан покойному С. Лесьневскому, который развил их в своих неопубликованных лекциях, прочитанных в Варшавском университете (в 1919 г. и позднее). Однако Лесьневский не предвидел возможности строгой разработки теории истины и тем более определения этого понятия, поэтому, указывая на эквивалентности вида Т как на предпосылки антиномии лжеца, он не видел в них достаточных условий для адекватного употребления (или определения) понятия истины. Также и замечания в разделе 8 относительно вхождения эмпирической посылки в антиномию лжеца и возможности устранения этой посылки не связаны с ним.

9

За более подробным разъяснением различных логических и методологических проблем, затронутых в данной статье, читатель может обратиться к работе: Tarski A. (1941).

10

В оригинале речь идет, естественно, о буквах английского алфавита. – Прим. перев.

11

Антиномия лжеца (приписываемая Эвбулиду или Эпимениду) обсуждается здесь в разделах 7 и 8. Об антиномии определимости (восходящей к Ж. Ришару) см., например, работу: Hilbert D., Bemays P. (1934- 1939), v. 2, p. 263ff; об антиномии гетерологических терминов см. работу: Grelling К., Nelson L. (1908), р. 307.

12

Дана проф. Я. Лукасевичем (Варшавский университет).

13

Это можно сделать приблизительно следующим образом. Пусть S будет любым предложением, начинающимся со слов Каждое предложение. Мы сопоставим S новое предложение S*, подвергая S двум следующим модификациям: заменяем в S первое слово Каждое словом Это (определенный артикль "The" – Прим. перев.); после второго слова предложение мы вставляем все предложение S, заключенное в кавычки. Договоримся называть предложение S (само)применимым или не(са-мо)применимым в зависимости от того, истинно или ложно сопоставленное ему предложение S*. Теперь рассмотрим следующее предложение:

Каждое предложение является не (само)применимым.

Легко показать, что сформулированное предложение должно быть и (само)применимым и не(само)применимым, следовательно, мы пришли к противоречию. Быть может, не вполне ясно, в каком смысле эта формулировка антиномии не включает эмпирической посылки, однако я не буду останавливаться на этом вопросе.

14

Термины логика и логический в данной статье употребляются в самом широком смысле, который в последние десятилетия стал почти традиционным. Логика понимается здесь как охватывающая всю теорию классов и отношений (т. е. математическую теорию множеств). Лично я по многим причинам предпочитаю употреблять термин логика в более узком смысле, включающим в себя только то, что иногда называют элементарной логикой, т. е. пропозициональное исчисление и (узкое) исчисление предикатов.

15

Однако см. к этому работу: Tarski A. (1936), р. 5.

16

Метод построения, который мы собираемся обрисовать, с соответствующими изменениями применим ко всем формализованным языкам, известным в настоящее время. Из этого не следует, правда, что нельзя создать язык, к которому данный метод будет применим.

17

При осуществлении этой идеи возникает определенная техническая трудность. Пропозициональная функция может содержать произвольное число свободных переменных, а логическая природа понятия выполнимости изменяется в зависимости от этого числа. Когда речь идет о функциях с одной переменной, то обсуждаемое понятие является бинарным отношением между этими функциями и единичными объектами; для функций с двумя переменными оно становится тернарным отношением между функциями и парами объектов и т. д. Таким образом, мы имеем дело, строго говоря, не с одним понятием выполнимости, а с бесконечным множеством таких понятий, и оказывается, что эти понятия не могут быть определены независимо одно от другого и все должны вводиться одновременно.

Для преодоления этой трудности мы используем математическое понятие бесконечной последовательности (или, может быть, конечной последовательности с произвольным числом терминов). Мы договариваемся рассматривать выполнимость не как многоместное отношение между пропозициональными функциями и бесконечным числом объектов,как бинарное отношение между функциями и последовательностями объектов. При таком допущении формулировка общего и точного определения выполнимости больше не представляет никаких трудностей. Теперь истинное предложение можно определить как предложение, которое выполняется каждой последовательностью.

18

Для того чтобы рекурсивно определить понятие выполнимости, мы должны использовать определенную форму рекурсивного определения, не разрешенную в объектном языке. Поэтому существенное богатство мета-языка может заключаться просто в наличии этого типа определения, С другой стороны, известен общий метод, позволяющий устранить все рекурсивные определения и заменить их обычными, явными определениями. Когда мы пытаемся применить этот метод к определению выполнимости, мы видим, что должны либо ввести в мета-язык переменные более высокого логического типа, чем переменные объектного языка, либо задать аксиоматически в мета-языке существование классов, более широких по объему, чем все те классы, существование которых может быть установлено в объектном языке. (См. работы: Tarski А. (1935), р. 393; Tar-ski A. (1939), р. 110)

19

Благодаря развитию современной логики понятие математического доказательства подверглось серьезному упрощению. Предложение данной формализованной дисциплины доказуемо, если оно может быть получено из аксиом этой дисциплины с помощью определенных простых и чисто формальных правил вывода, таких, например, как правило отделения и подстановки. Таким образом, чтобы показать, что все доказуемые предложения истинны, достаточно доказать, что все предложения, принятые в качестве аксиом, истинны и что правила вывода, применяемые к истинным предложениям, вновь приводят к истинным предложениям. Обычно это не представляет трудностей.

С другой стороны, вследствие элементарной природы понятия доказуемости его точное определение требует лишь простых логических средств. В большинстве случаев такие логические средств имеются в самой формализованной дисциплине (к которой относится понятие доказуемости). Однако нам известно, что в отношении определения истины дело обстоит иначе. Поэтому, как правило, понятия истины и доказуемости не могут совпадать, а так как каждое доказуемое предложение истинно, должны существовать истинные предложения, которые недоказуемы.

20

Таким образом, теория истины дает нам общий метод доказательства непротиворечивости для формализованных математических дисциплин. Однако нетрудно понять, что доказательство непротиворечивости, полученное этим методом, может обладать некоторой интуитивной ценностью, т. е. увеличивать нашу веру в то, что рассматриваемая дисциплина действительно непротиворечива только в том случае, если нам удалось дать определение истины в терминах мета-языка, не содержащего объектный язык в качестве своей части (см. замечание в разделе 9) Только в этом случае дедуктивные допущения мета-языка могут быть интуитивно проще и более очевидны, чем допущения объектного языка, хотя условие существенного богатства будет формально выполнено. (См. к этому также работу: Tarski А. (1936), р. 7).

Неполнота обширного класса формализованных дисциплин является существенным содержанием фундаментальной теоремы К. Гёделя (см. работу: Godel К. (1931), р. 187ff). Объяснение того факта, что теория истины прямо приводит к теореме Гёделя, является достаточно простым, При выводе результата Гёделя из теории истины для нас существенно то, что определение истины нельзя дать в мета-языке, который столь же богат, как объектный язык (см. сноску 19). Однако при обосновании этого используется метод рассуждения, очень тесно связанный с тем, который (в первый раз) использовал Гёдель. Можно добавить, что в своем доказательстве Гёдель очевидно руководствовался некоторыми интуитивными соображениями, связанными с понятием истины, хотя в явном виде это понятие в его доказательстве не встречается (см.: Godel К. (1931), р. 174).

21

Понятия обозначения и определения приводят, соответственно, к антиномиям Греллинга-Нельсона и Ришара (см. сноску 11). Чтобы получить антиномию для понятия выполнимости, мы строим следующее выражение:

Пропозициональная функция Х не выполняет X.

Противоречие возникает при рассмотрении вопроса о том, выполняет ли это выражение, которое очевидно является пропозициональной функцией, само себя или нет.

22

Все понятия, упоминаемые в данном разделе, могут быть определены с помощью выполнимости. Можно сказать, например, что данный термин обозначает некоторый объект, если этот объект выполняет пропозициональную функцию х тождествен Т, в которой Т представляет данный термин. Аналогично пропозициональная функция определяет данный объект, если последний является единственным объектом, выполняющим эту функцию. Определение следования см. в работе: Tarski A. (1937), а определение синонимии – в работе: Сатар R. (1942).

23

Общая семантика является предметом работы: Carnap R. (1942). См. также замечания в работе: Tarski A. (1935), р. 388.

24

См. различные цитаты в работе: Ness A. (1938), р. 13.

25

Имена людей, высказавших возражения, не будут здесь названы, если их возражения не были опубликованы.

26

Следует подчеркнуть, однако, что положение с предполагаемым порочным кругом не изменится" даже если мы примем другую точку зрения, представленную, например, в работе: Carnap R. (1942), т. е. спецификацию условий, при которых предложения некоторого языка считаются истинными, будем рассматривать как существенную часть описания этого языка. С другой стороны, можно заметить, что позиция, представленная в тексте, не исключает возможности использовать таблицы истинности в дедуктивном развитии логики. Однако в этом случае такие таблицы должны рассматриваться только как формальный инструмент проверки доказуемости определенных предложений, а символы Т и F, которые встречаются в них и обычно считаются сокращениями слов истинно и ложно, не получают какой-либо интуитивной интерпретации.

27

См. работу: Juhos В. von (1937). Должен признаться, я не вполне понял возражения Юхоса и не знаю, как их классифицировать, поэтому должен ограничиться здесь некоторыми формальными соображениями. По-видимому, Юхосу неизвестно мое определение истины, он ссылается лишь на неформальное изложение в работе: Tarski A. (1936), в которой определение вообще не было дано. Если бы он был знаком с подлинным определением, он изменил бы свой аргумент. Но я сомневаюсь, что и в этом определении он обнаружил бы некоторые дефекты, ибо полагает, будто ему удалось доказать, что такое определение принципиально невозможно дать.

28

Фразы р истинно и р имеет место (или "лучше: истинно, что р и имеет место, что р) иногда используются в неформальных рассуждениях, в основном по стилистическим соображениям. Однако в этих случаях они рассматриваются как синонимы предложения, представленного посредством р. В то же время, насколько я понимаю, эти фразы не могут употребляться Юхосом как синонимы р*. В противном случае замена Г на Г или Т" не дала бы никакого улучшения.

29

См. обсуждение этой проблемы в работе: Kokoszynska М. (1936а), р.161ff.

30

Большинство авторов, обсуждавших мою работу о понятии истины, придерживаются мнения, что мое определение не соответствует классическому истолкованию этого понятия; см., например, работы: Kotarbinski T. (1930), Scholz H. (1937).

31

См.: Ness A. (1938) К сожалению, результаты той части исследования Несса, которые особенно важны для нашей проблемы, в его книге не обсуждаются, ср. с. 148, примечание 1.

32

Хотя я несколько раз слышал это возражение, в печати я встретил его лишь однажды, причем, что достаточно курьезно, в работе, не имеющей отношения к философии: Hilbert D., Bemays P. (1939), v. 2, р. 269 (где оно не имеет характера какого-либо возражения). С другой стороны, в обсуждениях моей работы профессиональными философами я не нашел никаких замечаний на эту тему (см. сноску 2).

33

См. работу: Gonseth F. (1938), р. 187.

34

См. работы: Nagel Е. (1938), Nagel E. (1942), р. 471. Замечание, идущее, может быть, в том же самом направлении, можно найти в работе: Weinberg J. (1942), р. 77; см., однако, его предыдущие замечание на р. 75.

35

Эта тенденция очевидна в ранних работах Карнапа (см., например: Carnap R. (1937), в частности, часть V) и в сочинениях других членов Венского кружка. См. об этом работы: Kokoszynska M. (1936a), Weinberg J. (1942)

36

О других результатах, полученных с помощью теории истины, см. работы: GodelK. (1936), Tarski A. (1935), р. 401, Tarski A. (1939), p. 111.

37

Некоторый объект, например, число или множество чисел, называется определимым (в данном формализме), если существует пропозициональная функция, определяющая его (см. сноску 22). Таким образом, хотя термин определимый имеет мета-математический (семантический источник, он является чисто математическим по своему объему, так как выражает свойство (обозначает класс) математических объектов. Благодаря этому понятие определимости можно переопределить в чисто математических терминах, хотя и не в рамках той формализованной дисциплины, к которой это понятие относится. Однако фундаментальная идея определения не изменяется. См. к этому, а также для дальнейших библиографических ссылок, работу: Tarski A. (1931). Различные другие результаты относительно определимости можно найти в литературе, например, в работе: Hubert D., Beniays P. (1939), v. 1, pp. 354, 369, 456П; Lindebaum A., Tarski A. (1936). Можно заметить, что термин определимый иногда употребляется в другом, мета-математическом (но несемантическом) смысле. Это происходит, например, в тех случаях, когда мы говорим, что некоторый термин определим в других терминах (на базе данной системы аксиом) Об определении модели системы аксиом см. работу: Tarski A. (1937).


Еще от автора Альфред Тарский
Истина и доказательство

Тарский А. Истина и доказательство // Вопросы философии. 1972. № 8. С. 136-145.


Рекомендуем почитать
Полное собрание сочинений. Том 43. (Март ~ июнь 1921)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Актуальность сложности. Вероятность и моделирование динамических систем

Исследуется проблема сложности в контексте разработки принципов моделирования динамических систем. Применяется авторский метод двойной рефлексии. Дается современная характеристика вероятностных и статистических систем. Определяются общеметодологические основания неодетерминизма. Раскрывается его связь с решением задач общей теории систем. Эксплицируется историко-научный контекст разработки проблемы сложности.


Философия преступления и наказания

В настоящей монографии рассматриваются основополагающие проблемы уголовного права, связанные с преступлением и наказанием. Автор с философских позиций размышляет над вопросами о причинах и истоках преступления, сущности наказания, будущем преступности и наказания. Книга предназначена для студентов, аспирантов и преподавателей юридических вузов, работников правоохранительных органов, теоретиков и практиков, специализирующихся в области уголовного права, а также философов, социологов, психологов и всех интересующихся проблемами борьбы с преступностью.


Философия зла и философия преступности

В книге дан философский анализ таких феноменов, как «зло» и «преступность». Преступность рассматривается также в криминологическом и уголовно-правовом аспектах. Показана опасность, которую несут криминализация общественного сознания, рост интенсивности преступных посягательств в России и мире, ставящие под угрозу существование человечества. Особое внимание уделено проблемам власти и преступности, уголовной политике и вопросу ответственности лидеров власти за состояние дел в сфере борьбы с преступностью.


Метафизика любви

«Метафизика любви» – самое личное и наиболее оригинальное произведение Дитриха фон Гильдебранда (1889-1977). Феноменологическое истолкование philosophiaperennis (вечной философии), сделанное им в трактате «Что такое философия?», применяется здесь для анализа любви, эроса и отношений между полами. Рассматривая различные формы естественной любви (любовь детей к родителям, любовь к друзьям, ближним, детям, супружеская любовь и т.д.), Гильдебранд вслед за Платоном, Августином и Фомой Аквинским выстраивает ordo amoris (иерархию любви) от «агапэ» до «caritas».


Марксизм: испытание будущим

Глобальный кризис вновь пробудил во всем мире интерес к «Капиталу» Маркса и марксизму. В этой связи, в книге известного философа, политолога и публициста Б. Ф. Славина рассматриваются наиболее дискуссионные и малоизученные вопросы марксизма, связанные с трактовкой Марксом его социального идеала, пониманием им мировой истории, роли в ней «русской общины», революции и рабочего движения. За свои идеи классики марксизма часто подвергались жесткой критике со стороны буржуазных идеологов, которые и сегодня противопоставляют не только взгляды молодого и зрелого Маркса, но и целые труды Маркса и Энгельса, Маркса и Ленина, прошлых и современных их последователей.