Сборник задач по математике с решениями для поступающих в вузы - [8]
3.4. Даны четыре скрещивающиеся прямые: а, b, с и d. Постройте прямую, параллельную а и одинаково удаленную от остальных трех прямых.
3.5. Равносторонний треугольник ABC со стороной, равной а, лежит на плоскости P. На перпендикуляре, восставленном из точки А к плоскости P, отложен отрезок АS = а. Найдите тангенс острого угла между прямыми AB и AC.
3.6. В пространстве даны два луча Ax и By, не лежащие в одной плоскости и образующие между собой угол 90°; AB — их общий перпендикуляр. На лучах Ax и By взяты точки: M на Ax и P на By, такие, что 2АМ · ВР = AB². Докажите, что расстояние от середины O отрезка AB до прямой MP равно >1/>2AB.
3.7. Докажите, что четырехгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
3.8. На плоскости P лежит правильный треугольник ABC со стороной а. Из точек С и В восставлены перпендикуляры к плоскости P и на них отложены отрезки СЕ = а√2 и BD = >a/>√2 (с одной стороны от плоскости P). Найдите площадь треугольника DEA и косинус угла между плоскостью P и плоскостью этого треугольника.
3.9. Найдите объем пирамиды, в основании которой лежит правильный треугольник со стороной а, если двугранные углы между плоскостью основания и боковыми гранями равны α, β и γ.
3.10. Основанием пирамиды DABC служит равнобедренный треугольник ABC с площадью S и основанием AB = а. Две боковые грани пирамиды, опирающиеся на равные стороны основания, имеют при вершине пирамиды прямые углы. Найдите угол, образованный третьей боковой гранью пирамиды и плоскостью основания, если объем пирамиды равен V.
3.11. В правильной треугольной пирамиде площадь основания равна √3, а угол бокового ребра с плоскостью основания в четыре раза меньше плоского угла при вершине. Найдите площадь боковой поверхности.
3.12. В тетраэдр вписан другой тетраэдр так, что его вершины лежат в точках пересечения медиан граней первого тетраэдра. Найдите отношение объемов тетраэдров.
3.13. Шар касается всех боковых граней пирамиды в точках пересечения их медиан, причем центр шара находится внутри трехгранного угла, образованного боковыми гранями пирамиды. Докажите, что пирамида правильная.
3.14. Докажите, что в усеченной пирамиде сторона квадрата, равновеликого площади сечения пирамиды, проходящего через середину высоты пирамиды параллельно ее основанию, равна среднему арифметическому сторон квадратов, равновеликих основаниям пирамиды.
3.15. В пирамиде ABCD дано BC = а, CA = b, AB = с, DA = а>1, DB = b>1, DC = с>1. Найдите косинус острого угла между скрещивающимися ребрами AD и BC этой пирамиды.
3.16. Плоскость, проходящая через одно из ребер правильного тетраэдра, делит его объем в отношении 3 : 5. Найдите тангенсы углов α и β, на которые эта плоскость делит двугранный угол тетраэдра.
3.17. В правильной четырехугольной пирамиде двугранный угол при основании равен α. Через ребро основания проведена внутри пирамиды плоскость, составляющая с основанием угол β. В каком отношении она делит площади тех боковых граней, которые она рассекает на два треугольника?
3.18. Высота треугольной пирамиды ABCD, опущенная из вершины D, проходит через точку пересечения высот треугольника ABC. Кроме того, известно, что DB = b, DC = с, ∠ BDC = 90°. Найдите отношение площадей граней ADB и ADC.
3.19. В треугольной пирамиде SABC все плоские углы трехгранных углов с вершинами в точках A и B равны α, AB = а. Определите объем пирамиды.
3.20. Две грани треугольной пирамиды — равнобедренные прямоугольные треугольники с общей гипотенузой AB. Двугранный угол при AB равен α. Найдите двугранный угол, у которого ребро есть катет.
3.21. В треугольной пирамиде SABC два плоских угла ASB и BSC при вершине S равны α, а третий плоский угол ASC равен >α/>2. Ребро AS перпендикулярно к плоскости основания ABC. Найдите угол BAC.
3.22. В тетраэдре ABCD ребро AB = 6, ребро CD = 8, а остальные ребра равны √74. Найдите радиус R описанного шара.
3.23. В правильной треугольной пирамиде двугранный угол между боковыми гранями равен α. Найдите высоту данной пирамиды, если расстояние от основания высоты до бокового ребра равно а. Ответ приведите к виду, удобному для логарифмирования.
3.24. В основании треугольной пирамиды лежит правильный треугольник со стороной а. Одна боковая грань пирамиды представляет собой равнобедренный треугольник с боковой стороной b (b ≠ а) и перпендикулярна к плоскости основания. Найдите площадь сечения, которое является квадратом и пересекает эту грань по прямой, параллельной основанию.
3.25. Боковые ребра треугольной пирамиды равны а, b, с. Плоские углы при вершине прямые. В пирамиду вписан куб так, что одна его вершина находится в вершине пирамиды, а противоположная лежит в плоскости основания пирамиды. Найдите ребро куба.
3.26. В правильную треугольную пирамиду с высотой h вписан куб с ребром а так, что основание куба лежит на основании пирамиды. Найдите объем пирамиды.
3.27. Трехгранный угол, образованный тремя взаимно перпендикулярными прямыми, пересечен плоскостью. Докажите, что полученный в сечении треугольник остроугольный.
3.28. Найдите объем тетраэдра ABCD
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.