Ритм Вселенной. Как из хаоса возникает порядок - [81]
Для начала мы решили рассмотреть случай с десятью переходами. Такое количество переходов представлялось нам вполне обозримым, однако визуализировать случай со столь большим количеством переходов было очень непростым делом: вместо потока на квадрате или на поверхности тора траектории теперь пролегали в 10-мерном пространстве. Мои компьютерные программы неустрашимо ринулись в бой, продираясь сквозь нелинейные уравнения для 10-мерного пространства, продвигаясь к цели буквально крошечными шагами и отображая изменяющиеся фазы переходов в виде 10 точек, бегущих по окружности. Полученные изображения потрясли меня своей запутанностью и невразумительностью. Точки кружились и завихрялись, оставляя ошеломительное впечатление бесконечного хоровода, на основании которого, однако, невозможно было прийти к какому-то определенному заключению. Особенно трудно было проследить какие-либо постепенные изменения в относительном позиционировании. Немного легче стало после того, как я решил прибегнуть к испытанному приему со стробированием. Когда какой-то заранее выбранный переход достигал определенной фазы, происходила воображаемая вспышка, которая высвечивала фазы остальных девяти переходов. Это, конечно, помогло справиться с кружением огромного количества точек, однако оставались 9 точек, которые нужно было отслеживать одновременно. Необходимость отслеживания 9 точек означала необходимость визуализировать 9-мерное пространство.
Человеческий мозг не в состоянии легко визуализировать более трех измерений, а плоский экран компьютера вообще ограничивал картинку лишь двумя измерениями. Мне нужно было каким-то образом расширить свое сознание, попытаться представить, что происходит в этом странном 9-мерном мире. Немного поэкспериментировав, я остановился на мультипанельном формате, характерном для фильмов 1960-х годов, где на разных участках экрана («панелях») демонстрировались изображения разных актеров, причем каждому актеру отводился свой участок экрана. На одной панели отображалась фаза перехода № 2 в функции фазы перехода № 3, причем на одной оси были представлены значения фазы перехода № 2, а на другой – значения фазы перехода № 3. На других панелях отображались аналогичные зависимости между фазами переходов 3 и 4, 5 и 6 и т. д. Переход № 1 предназначался для запуска строба: когда он пересекал некую исходную линию (определенная фаза в его цикле), компьютер отображал соответствующую точку на каждой панели, представляя одновременные фазы в данный момент. В результате компьютерный экран заполняли панели, регулярно обновляемые после каждой стробоскопической вспышки.
Прежде чем взглянуть на систему из десяти переходов этими новыми теоретическими глазами, мне нужно было подготовиться к тому, что я мог увидеть. В наихудшем случае, если решения соответствующих нелинейных уравнений окажутся невероятно сложными, точки на каждой панели будут появляться то здесь, то там, постепенно заполняя собою некое аморфное тело. Если они будут заключать в себе некое подобие структуры, то это тело может быть похоже на кружево, испещренное бороздками. Или, если все окажется таким же на удивление простым, как в случае с двумя переходами, каждая очередная точка будет долбить в одно и то же место экрана (может, даже просверлит в нем дырку), никогда не покидая пределов пиксела, в котором она изначально появилась. Это беспрестанное повторение сигнализировало бы о том, что все траектории по-прежнему являются периодическими (поскольку в случае периодического решения каждый раз, когда переход № 1, пересекая исходную линию, запускает вспышку, переходы № 2 и № 3 всегда оказываются на своих местах – и так на любой другой панели).
Я включил компьютер и уставился на экран. Спустя какое-то время на каждой из панелей одновременно появилось по одной точке; это означало, что переход № 1 завершил один «круг» и зажег свой строб. Затем еще один круг, и еще один. На каждой из панелей точки «приземлялись» вблизи мест, где появилась первая точка, но не строго поверх первой точки. Что ж, это уже интересно! Эти неточные попадания означали, что траектории для 10 переходов не являются периодическими, а это, в свою очередь, подтверждало наши подозрения о том, что случай с двумя переходами является особым случаем, который не может служить надежным указанием на то, чего нам следует ожидать в случае большего количества переходов.
В ходе дальнейшего моделирования ситуации с 10 переходами начала вырисовываться несколько иная картина. Точки начали складываться в некую кривую, а вовсе не в ожидаемое мною аморфное тело, причем их движение казалось очень тщательно выверенным, прочерчивая траекторию, тонкую, как лезвие бритвы, удлиняя ее и заполняя в ней пустоты. Все панели показывали разные версии одной и той же базовой структуры: контур с несколько искаженной треугольной формой и скругленными углами. Я засомневался, не выбрал ли я ненароком слишком уж нехарактерную исходную точку. Поэтому я испытал много разных начальных условий. Когда я увидел результаты, моему удивлению не было границ. Каждая исходная точка приводила к появлению ее собственного треугольника со скругленными углами, причем все отдельные треугольники точно укладывались друг в друга, подобно русской матрешке.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.