Ритм Вселенной. Как из хаоса возникает порядок - [24]

Шрифт
Интервал

С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова линейные на данном этапе не должен интересовать нас; гораздо важнее для нас то обстоятельство, что линейные уравнения модульны по своей природе. То есть большую и запутанную линейную задачу всегда можно разделить на меньшие и более обозримые части. Каждую такую часть можно решить по отдельности, а полученные таким образом «маленькие ответы» можно воссоединить для решения более крупной задачи. Поэтому утверждение о том, что в линейной задаче целое равняется в точности сумме его частей, вообще говоря, верно.

Проблема, однако, в том, что линейным системам присуще лишь весьма примитивное поведение. Распространение инфекционных заболеваний, сильная когерентность лазерного луча, взбаламученное движение турбулентной жидкости – все эти явления описываются нелинейными уравнениями[42]. Когда целое отличается от суммы его составных частей (когда имеет место сотрудничество или конкуренция), уравнения, описывающие соответствующие явления, должны быть нелинейны.

Таким образом, вряд ли приходится удивляться тому, что когда Уинфри взглянул на свои дифференциальные уравнения для биологических осцилляторов, он увидел, что они нелинейны. Все линейные методы, о которых ему рассказывали на лекциях по физике и прикладным дисциплинам, в данном случае были неприменимы: он никогда не сможет найти формулы для решения этой задачи. Что же касается нелинейных методов, то те немногие, которые имелись в его распоряжении, были пригодны лишь для очень небольших систем, таких как отдельно взятый осциллятор или два связанных осциллятора. Для задачи, решение которой он пытался найти (динамика популяции, насчитывающей тысячи нелинейных осцилляторов, взаимодействующих между собой), нужно было придумать особый подход.


Чтобы имитировать работу своей модели, Уинфри использовал компьютер. То есть вместо использования чисто математического аппарата ему предстояло провести что-то наподобие эксперимента. Компьютер должен был отслеживать поведение осцилляторов по мере прохождения ими цикла за циклом с их переменными скоростями. Машине было все равно, о каких объектах – линейных или нелинейных – идет речь. От нее лишь требовалось постепенно, шаг за шагом, продвигаться вперед, обеспечивая достаточно надежную аппроксимацию истинного поведения модели, предложенной Уинфри. Уинфри надеялся, что полученные результаты подскажут ему, как должны вести себя осцилляторы. По крайней мере он мог бы увидеть, что должно происходить, даже если ему было не вполне понятно, почему это происходит именно так, а не иначе.

Вообще говоря, легко понять один ограниченный случай. Если осцилляторы полностью игнорируют друг друга, они распределяются по всей круговой дорожке, поскольку каждый из них «бежит» с предпочтительной для себя скоростью, а остальные осцилляторы не влияют на него. Более быстрые осцилляторы перегоняют более медленные осцилляторы и со временем обгоняют их на целый круг. На достаточно продолжительном отрезке времени осцилляторы будут распределены по всей дорожке. Говорят, что такая система некогерентна. Это похоже на то, как аплодируют зрители на концертах в Америке. Каждый из американских зрителей аплодирует сам по себе, не обращая внимания на соседей, – в том ритме, который подходит именно для него. В совокупности это похоже на устойчивый аритмичный шум.

Эксперименты с имитацией, проводившиеся Уинфри, зачастую приносили результаты, напоминающие именно этот вид некогерентности, даже когда осцилляторам предоставлялась возможность влиять друг на друга. При разных сочетаниях функций чувствительности и влияния популяция активно противодействовала синхронизации. Даже если все осцилляторы начинали работу строго синфазно, они нарушали согласованность своих действий и дезорганизовывались. Эта популяция настаивала на анархии.

Но в случае других пар функций чувствительности и влияния Уинфри обнаружил, что эта популяция самопроизвольно синхронизируется. Какими бы ни были начальные фазы осцилляторов, некоторые из них всегда слипались в прочный ком и бежали круг за кругом дружной компанией. В этом случае популяция вела себя подобно восточноевропейской зрительской аудитории, которая совершает синхронные хлопки без каких-либо видимых подсказок.

В подобных случаях синхронизация наступала в результате «сотрудничества» осцилляторов. Как только несколько осцилляторов входили в синхронизм (возможно, по чистой случайности), их совместные, когерентные «выкрики» начинали выделяться на фоне остального шума и оказывать более сильное влияние на все остальные осцилляторы. Это ядро начинало вербовать в свои ряды другие осцилляторы, в результате чего оно разрасталось и усиливало свой сигнал. Результирующий процесс положительной обратной связи приводил к самопроизвольному, все более ускоряющемуся процессу синхронизации, в ходе которого многие осцилляторы стремились присоединиться к формирующемуся консенсусу. Тем не менее некоторые осцилляторы оставались несинхронизированными, поскольку их естественные частоты слишком выбивались из общего ряда, чтобы их можно было вовлечь в процесс установления синхронизма. В конечном счете популяция разделялась на синхронизированную совокупность и дезорганизованную группу осцилляторов-экстремистов.


Еще от автора Стивен Строгац
Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.