Ритм Вселенной. Как из хаоса возникает порядок - [130]

Шрифт
Интервал

Процесс начинается, когда один из узлов выбирается (произвольным образом) в качестве инициатора, совершающего первый шаг – запуск процесса. Это можно представлять себе как падение первой костяшки домино. Затем, один за другим, в произвольном порядке, каждый узел смотрит на своих соседей и определяет, какая часть их уже «упала». Если к этому моменту порог данного конкретного узла уже превзойден, он «опрокидывается». В противном случае он продолает стоять. После того как обход всех узлов завершится, процесс проверок и «падений» начинается вновь. Какие-то из костяшек домино упадут уже в первом раунде (те соседи инициатора, пороги которых оказались достаточно низкими, чтобы упасть после того, как упадет инициатор). Они, в свою очередь, могут инициировать вторичные волны падений. Но если инициатор обладает слабой системой связей или если его соседи представляют собой консервативную совокупность с высокими порогами, то процесс может затухнуть, едва начавшись.

В этой идеализированной вселенной Дункану удалось определить, при каких именно условиях единственная костяшка домино запустит сильный лавинообразный процесс. Ему также удалось вычислить вероятность и масштаб таких каскадов, а также факторы риска, которые делают сеть в большей или меньшей степени предрасположенной к возникновению таких каскадов. Эти выводы с неизбежностью носят статистический характер; ничего нельзя сказать заранее о конкретных результатах каждого сеанса моделирования на компьютере: подробности исхода меняются от одного сеанса моделирования к другому. Эти подробности зависят от местоположения инициатора, от распределения порогов по популяции, от того, какой системой связей располагает каждый из узлов. Тем не менее проявляется ряд интересных тенденций, которые невозможно было бы предвидеть, опираясь лишь на доводы здравого смысла.

Основной результат заключается в том, что такая модель отображает два разных фазовых перехода, широко известных как переломный момент, или поворотный пункт. Если сеть располагает очень разреженной системой связей, она превращается, по сути, в совокупность небольших островков, и каскады не могут распространяться за пределы любого из этих островков. На более высоком, критическом уровне системы связей сети – первый переломный момент – островки внезапно связываются между собой в гигантскую сеть, в результате чего становятся возможными глобальные каскады. Теперь узел-инициатор может запустить «эпидемию» изменений, которая в конечном счете заражает большую часть популяции. По мере дальнейшего наращивания системы связей сети масштаб каскадов поначалу становится еще большим, а их возникновение становится еще более вероятным (впрочем, это нетрудно было предвидеть), но затем – и это уже оказывается неожиданным – масштаб каскадов становится еще большим, но возникают они реже и внезапно вообще прекращаются, когда сеть превышает некий критический порог системы связей сети. Этот второй переломный момент возникает вследствие эффекта разжижения: когда у какого-либо узла появляется слишком много соседей, каждый из них оказывает слишком малое влияние, чтобы самостоятельно запустить процесс падений. (Вспомните, что каждый узел сравнивает свой порог с частью своих соседей, которые уже упали, а не со всеми ними. Чем больше соседей у узла, тем меньшее влияние оказывает каждый из них – в «частичном» смысле.)

Непосредственно перед наступлением этого второго переломного момента исход оказывается чрезвычайно непредсказуемым – во многом так же, как это бывает с реальными модными увлечениями. На сеть могут воздействовать тысячи перспективных инициаторов, каждый из которых провоцирует в лучшем случае обманчивую «рябь», которая быстро затухает. С этой точки зрения сеть представляется весьма стабильной и устойчивой к внешним воздействиям. Затем появляется инициатор – на первый взгляд неотличимый от тех, кто вступал в действие до него – тем не менее именно этому инициатору удается запустить массивный каскад. Иными словами, вблизи этого второго переломного момента модные увлечения возникают редко, но если уж они возникают, то принимают гигантские масштабы.

Вот что происходит в этом случае (на интуитивном уровне). Внутри сети скрывается некое подмножество узлов, которое Дункан называет уязвимым кластером. Определяющим здесь является геометрическая структура этого кластера – способ, посредством которого он «просачивается» через остальную сеть. Выражаясь языком маркетинга, уязвимый кластер состоит из так называемых ранних последователей («энтузиастов», «первопроходцев»): это не инициаторы, а узлы, готовые к тому, чтобы опрокинуться, как только опрокинется хотя бы кто-нибудь из их соседей[271]. Вблизи второго переломного момента уязвимый кластер очень узок и почти незаметен – он занимает очень малый процент сети в целом, – поэтому шансы активизировать его с помощью случайного инициатора весьма невелики. Но после того как он оказывается активизирован, «пожар» с него постепенно перебрасывается на соседей, которые, в свою очередь, распространяют этот пожар на своих собственных соседей; этот процесс неумолимо продолжается до тех пор, пока весь этот гигантский компонент (обширная, взаимосвязанная сетчатая структура узлов, которая занимает доминирующее положение в системе) не оказывается объят пламенем. Самым удивительным здесь оказывается то, что почти все узлы в этом гигантском компоненте не являются ранними последователями: они представляют собой более консервативную совокупность с более высокими порогами (в литературе по маркетингу их называют «ранним и поздним большинством»). Однако поскольку сеть оказывается столь плотно связанной вблизи второго переломного момента, искра, которой удалось активизировать уязвимый кластер, способна создать достаточный импульс для активизации практически всех остальных узлов.


Еще от автора Стивен Строгац
Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.