Ритм Вселенной. Как из хаоса возникает порядок - [115]
Тем не менее, теоретики, как правило, предпочитали уклоняться от изучения проблемы связей, бросаясь из одной крайности в другую. Они принимали за основу либо нереалистично регулярную структуру, либо совершенно хаотичную систему связей. Например, в 1969 г. биолог-теоретик Стюарт Кауффман предложил идеализированную модель генных сетей[235], в которой каждый ген регулировался продуктами двух других, выбранных произвольно из остального генома, причем это объяснялось не тем, что он полагал, будто его модель соответствует действительности, а тем, что в 1969 г. никто не знал, как именно организованы связи в генных сетях. Предположение о произвольности связей равноценно гаданию на кофейной гуще: принятие нулевой гипотезы в отсутствие какой-либо информации. Эпидемиологи-математики зачастую прибегали к такой же аппроксимации: они предполагали, что инфицированные люди взаимодействовали случайным образом с людьми, восприимчивыми к инфекции, несмотря на то что в случае определенных видов заболеваний (особенно в случае заболеваний, передаваемых половым путем) сеть контактов никоим образом не может носить случайный характер. Подобно регулярным сетям, произвольные сети являются весьма соблазнительными идеализациями. Теоретикам они кажутся привлекательными не из-за их правдоподобия, а потому, что анализировать такие сети проще всего.
К 1996 г. осталось не так уж много ученых, готовых верить в правдоподобие регулярных и произвольных сетей. У каждого, кто пользовался интернетом, возникало ощущение, что интернет – это, с одной стороны, некая упорядоченная структура, а с другой стороны, некий запутанный лабиринт, где веб-страницы связаны главным образом с другими веб-страницами по той же теме, но время от времени способны вывести вас на маршруты, не имеющие ничего общего с вашими первоначальными намерениями. СПИД и вирус Эбола продемонстрировали, что инфекционные заболевания распространяются главным образом в изолированных и сплоченных сообществах, но также разносятся по всему миру на самолетах. Таким образом, не было ничего удивительного в том, что Дункан предложил отправиться на эту неизведанную территорию, в мир, находящийся на грани порядка и случайности.
Мы приступили к попыткам представить в наглядном виде сеть, находящуюся посреди порядка и случайности. Простейший подход заключался в том, чтобы взять регулярную сеть и плавно преобразовать ее в произвольную (что-то наподобие голливудского спецэффекта плавного преобразования одного лица в другое, как в известном видеоклипе Майкла Джексона «Черное или белое» (Black or White)). Например, выполнив такое преобразование примерно наполовину, мы могли бы выбрать половину первоначальных связей в какой-либо сети, удалить их и заменить их одинаковым количеством связей, разбросанных между произвольными парами узлов. В результирующей сети будет такое же количество связей, что и в исходной, однако теперь сеть будет наполовину произвольной и наполовину регулярной. Или, вместо того чтобы переустанавливать половину связей, мы могли бы выбрать любое другое соотношение между регулярными и произвольными связями. Задавая любую желаемую нами долю переустанавливаемых связей, мы могли бы постепенно настраивать свою сеть от 0 (первоначальная, исходная сеть, в которой количество переустановленных связей равняется 0) до 1 (полностью переустановленные, произвольные связи). Все, что находится между этими полюсами, представляло бы собой настраиваемое сочетание того и другого.
В качестве конкретного примера рассмотрим 6 миллиардов узлов, расположенных по окружности. Эти узлы могут представлять компьютеры, нейроны, людей – то есть компоненты, из которых состоит рассматриваемая нами сеть. Предположим, что каждый узел сети соединяется с 1000 соседних узлов: 500 узлов слева и 500 узлов справа. Это чрезвычайно упорядоченная сеть, идеально симметричная кольцевая структура. На этой стадии коэффициент настройки равен 0 (регулярный край спектра). Теперь начнем выполнять преобразование, медленно поворачивая ручку настройки от 0 в сторону 1. Несколько связей оторвутся от мест своего крепления и переустановятся случайным образом в других местах. По мере продолжения этой метаморфозы все большее и большее количество связей будет переустанавливаться случайным образом в других местах, нарушая таким образом симметрию исходной кольцевой структуры, в то же время оставляя неизменной какую-то ее часть.
Для количественной оценки изменяющиеся архитектуры этой сети мы ввели два статистических показателя. Один из них, «средняя длина пути», формализует интуитивное представление о степенях отчуждения. Чтобы вычислить этот показатель, нужно взять какую-либо пару узлов и подсчитать количество связей в кратчайшей цепочке между ними, а затем повторить эту процедуру для всех остальных пар узлов и усреднить результирующие длины цепочек.
В случае первоначальной кольцевой структуры такое вычисление не представляет серьезной проблемы, особенно если вооборазить такую сеть как некое общество, где каждый узел представляет какого-то человека, а связи представляют дружеские отношения между людьми. Этот воображаемый мир («кольцевой мир») несколько похож на наш реальный мир в том отношении, что количество элементов в том и другом случае равняется 6 миллиардам. Однако во всех остальных отношениях эти два мира совершенно непохожи. Обитатели нашего воображаемого мира вынуждены жить в условиях очень жестких ограничений: они должны стоять плечом к плечу, расположившись по огромному кругу. Допустим, каждый человек обязан дружить с 500 людьми, расположенными по правую руку от него, и с 500 людьми, расположенными по левую руку, – и ни с кем больше. В таком мире не было бы шести степеней отчуждения – в нем было бы целых 3 миллиона степеней отчуждения!
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.