Революция в физике - [29]

Шрифт
Интервал

Изменения, внесенные теорией относительности в определение импульса, привели, разумеется, к соответствующему изменению выражения для энергии. И это не удивительно, поскольку три компоненты вектора количества движения и энергия представляют собой четыре компоненты четырехмерного вектора, называемого вектором энергии импульса или четырех-вектором импульса.

Это новое выражение для энергии очень интересно тем, что при скорости, равной нулю, энергия не обращается в нуль, как это следовало из старого нерелятивистского выражения для энергии, а принимает постоянное значение, равное произведению массы покоя на квадрат скорости света в пустоте. Таким образом, всякая материальная точка, всякое тело, обладающее инерцией, имеет некоторую собственную энергию или энергию покоя, независящую от скорости. Если скорость тела отлична от нуля, то его энергия превышает энергию покоя. Разность между полной энергией движущегося тела и его энергией покоя характеризует скорость движения и может быть названа кинетической энергией тела. Анализ релятивистского выражения для кинетической энергии показывает, что при скоростях движения, много меньших скорости света, оно с точностью до малых поправок переходит в выражение для кинетической энергии, используемое в старой классической механике (половина произведения массы на квадрат скорости). Таким образом, мы снова видим, что ньютонова механика – первое приближение, справедливое при скоростях движения, много меньших скорости света.

Материальное тело, покоящееся относительно некоторого наблюдателя, обладает в системе координат, связанной с этим наблюдателем, энергией, равной произведению массы покоя на квадрат скорости света. Но если тело начинает двигаться, то его масса возрастает. При приближении скорости тела к скорости света она стремится к бесконечности. Это еще раз указывает на то, что никакому материальному телу с массой покоя, отличной от нуля, невозможно сообщить скорость, равную или тем более превышающую скорость света в пустоте. Эйнштейн обобщил этот результат, показав, что всякое материальное тело, обладающее некоторой массой (измеренной каким-либо наблюдателем), имеет, с точки зрения того же самого наблюдателя, энергию, равную произведению измеренной им массы на квадрат скорости света. Эйнштейн проиллюстрировал это утверждение многочисленными примерами. Так был установлен принцип эквивалентности массы и энергии, отражающий глубокую и общую связь между массой и энергией. Из него следует, что все тела, теряя энергию, теряют и массу, и, обратно, с увеличением энергии увеличивается масса тела. Так, например, масса атома уменьшается при излучении.

Установленный теорией относительности принцип эквивалентности массы и энергии сыграл большую роль во всей теоретической физике, начиная с астрофизики и кончая атомной и ядерной физикой. В частности, стало возможно написать баланс энергии для явлений ядерного распада и получить отсюда ряд весьма общих формул, описывающих эти явления. Однако эти вопросы уже не имеют к нашей теме прямого отношения, и мы их касаться не будем.

4. Общая теория относительности

Остановимся теперь в нескольких словах на общей теории относительности. Вначале теория относительности была создана Эйнштейном лишь для инерционных систем координат, т.е. для систем координат, движущихся прямолинейно и равномерно относительно системы неподвижных звезд, и так же, как и в старой классической механике, принцип относительности был провозглашен только для прямолинейного и равномерного движения. Поэтому под теорией относительности понимают обычно совокупность наиболее существенных результатов, относящихся к инерционным системам координат. Чтобы подчеркнуть это, ее иногда называют частной или специальной теорией относительности. Но необходимо было попытаться обобщить эти результаты на случай ускоренного движения и построить теорию, справедливую в более общем случае. Для непрямолинейного или ускоренного движения, вообще говоря, принцип относительности в его прежней формулировке оказывается уже несправедливым, поскольку в системе координат, движущейся ускоренно (например, вращающейся), механические, оптические или электромагнитные явления протекают иначе, чем в инерциальных системах отсчета. В частности, для правильного описания механических явлений, протекающих в ускоренной системе координат, необходимо вводить некие фиктивные дополнительные силы, называемые центробежными и силами Кориолиса. А необходимость введения этих сил дает наблюдателю возможность определить наличие ускорения системы координат, с которой он связан. Тем не менее и в этом случае можно все же сохранить принцип относительности в его более общей форме, если допустить, что все законы природы выражаются в виде тензорных соотношений в четырехмерном пространстве и попытаться учесть влияние ускорения на физические явления введением ускоренно движущихся систем координат. Более подробный анализ показывает, что использование криволинейных координат в четырехмерном пространстве позволяет объяснить явления, наблюдаемые ускоренно движущимся наблюдателем, и, в частности, введение центробежных и других связанных с ними сил.


Рекомендуем почитать
Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Нелокальность

«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.