Революция в физике - [28]
Мы не будем дальше задерживаться на этом вопросе, более глубокое изучение которого требует привлечения соответствующего математического аппарата, а посмотрим теперь, к каким изменениям в законах классической механики привела теория Эйнштейна.
3. Релятивистская динамика
Классические уравнения ньютоновой механики инвариантны относительно преобразования Галилея. И если рассматривать это преобразование как соотношение, отражающее истинную связь между координатами, измеряемыми двумя наблюдателями, движущимися друг относительно друга прямолинейно и равномерно, то отсюда однозначно следует, что уравнения Ньютона справедливы во всех системах координат, движущихся прямолинейно и равномерно относительно системы неподвижных звезд. Во всех этих системах координат механические явления будут подчиняться одним и тем же законам и, следовательно, никакие механические явления не могут позволить определить скорость системы отсчета, в которой производятся измерения относительно неподвижных звезд. В этом и состоит принцип относительности старой механики. Но с тех пор как Эйнштейн показал, что связь между координатами двух движущихся систем отсчета дается не преобразованием Галилея, а преобразованием Лоренца, положение совершенно изменилось. И, в частности, принцип относительности оказался применимым к оптическим и электромагнитным явлениям, что полностью согласуется с отрицательными результатами опыта Майкельсона и аналогичных ему других экспериментов. Но уравнения ньютоновой механики оказались неинвариантными относительно преобразования Лоренца, и, следовательно, принцип относительности оказался для механических явлений, строго говоря, уже несправедливым. Однако Эйнштейн считал этот вывод неправильным и исходил из предположения о том, что принцип относительности должен быть справедлив для всех физических явлений, в частности и для механических. Но тогда уравнения механики нужно было обобщить таким образом, чтобы они стали инвариантными относительно преобразования Лоренца. При этом новые уравнения должны совпадать в первом приближении со старыми уравнениями Ньютона во всех исследованных ранее случаях, где экспериментальные данные блестяще подтверждали эту теорию. Стало понятно, каким образом необходимо было обобщить основные уравнения механики, чтобы они оказались инвариантными относительно преобразования Лоренца. Уравнения Ньютона утверждают, что производная импульса по времени равна действующей силе. В динамике Эйнштейна это утверждение сохраняет свою силу с той лишь разницей, что импульс определяется там несколько иным образом. Под импульсом материальной точки релятивистская механика понимает не просто произведение массы материальной точки на ее скорость, а произведение массы на частное от деления скорости на некоторую функцию, зависящую от квадрата отношения скорости материальной точки к скорости света в пустоте. Поскольку в обычных условиях скорость материальных тел достаточно мала и квадрат отношения ее к скорости света пренебрежимо мал по сравнению с единицей, то эта функция без заметной ошибки может быть положена равной единице, и мы снова приходим к старым нерелятивистским уравнениям механики. Однако при скоростях, сравнимых со скоростью света, эта функция отлична от единицы и существенно зависит от величины скорости. Отсюда следует отличие релятивистских законов от нерелятивистских, которое тем более заметно, чем ближе скорость тела к скорости света. Кстати, из новых уравнений механики с очевидностью следует, что скорость материальной точки никогда не может достигнуть скорости света в пустоте. Таким образом, скорость света в пустоте оказывается верхним пределом скорости передачи энергии в пространстве. И так a posteriori оказывается оправданной одна из гипотез, сделанных Эйнштейном при анализе методов синхронизации часов.
Мы не в состоянии проводить здесь подробный анализ уравнений релятивистской механики. Достаточно заметить, что весь ее аппарат можно развить точно таким же путем, как это делалось в нерелятивистской классической механике. Например, все уравнения релятивистской динамики легко могут быть получены из некоторого принципа стационарного действия, из которого в свою очередь следуют уравнения Лагранжа и Гамильтона. Таким образом, мы снова приходим к теории Якоби и в случае статических силовых полей к принципу наименьшего действия Мопертюи. Однако между старой и новой механикой имеется большая разница. Подынтегральные выражения, стоящие в интеграле действия, в обоих этих случаях существенно отличаются друг от друга и практически совпадают лишь при достаточно малых скоростях, когда квадрат отношения скорости движения материального тела к скорости света в пустоте пренебрежимо мал по сравнению с единицей. Отсюда следует, что классическая нерелятивистская механика является приближением, справедливым в громадном большинстве практически интересных случаев.
Изменения, вносимые теорией относительности в уравнения классической механики, сводятся к замене старого импульса произведением некоторой константы, характеризующей свойства материальной точки, на частное от деления ее скорости на функцию, также зависящую от скорости. При желании, однако, можно и в релятивистской механике определить импульс так же, как и в нерелявистской, т.е. как произведение массы на скорость, с той лишь разницей, что в этом случае масса будет уже зависеть от скорости. Поскольку дополнительная функция, фигурирующая в релятивистском выражении для импульса, стремится к единице, когда скорость стремится к нулю, то отсюда следует, что константа должна быть положена равной массе покоя материальной точки, или, как иногда говорят, собственной массе. Последнее название связано с тем, что именно эту величину массы измерил бы наблюдатель, движущийся с той же скоростью, что и материальная точка. Как уже было отмечено, зависимость массы от скорости становится существенной лишь для достаточно больших скоростей, сравнимых со скоростью света.
Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.
Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.