Радость познания - [8]

Шрифт
Интервал

Если вас интересуют основные принципы устройства физического мира или завершенная картина мира, то в настоящий момент наш единственный путь познания связан с умозаключениями, основанными на математическом аппарате. Не думаю, что человек без знания математики сможет сегодня полностью или хотя бы частично оценить специфику особенностей мира, чрезвычайно глубокую универсальность законов, взаимосвязь явлений. Я не знаю никакого другого пути… мы не знаем другого способа точного описания мира… или способа увидеть его внутренние взаимосвязи без математики. Полагаю, что человек, не разработавший некоторой математической процедуры, не способен оценить эту сторону мира. Не поймите меня неправильно — существует множество сторон мира, где математика не нужна, например, любовь, оценка которой восхитительна и тонка, это чувство внушает трепет и благоговение. Я не имею в виду, что в жизни есть только одна вещь — физика, но мы беседуем о физике, и коль скоро мы говорим о ней, то незнание математики ведет к жестким ограничениям в понимании мира.

Сокрушительные атомы

Понимаете, то, над чем я работаю в физике именно сейчас, — это очень важная задача, в которой мы столкнулись с трудностями; попробую описать ее. Вы знаете, что все состоит из атомов, мы поняли это давно, и многие знают, что атом состоит из ядра и электронов, движущихся вокруг него. Поведение внешней части, электронов, теперь полностью известно, законы для них хорошо изучены, насколько их можно трактовать в рамках квантовой электродинамики, о ней я вам уже рассказывал. И после того как все это раскрутили, оставался вопрос, как работает ядро, как взаимодействуют в нем частицы, как они удерживаются вместе? Одним из побочных продуктов ядерной физики оказалось открытие деления ядра и создание атомной бомбы. Но исследование сил, которые удерживают ядерные частицы в ядре, — это давно существующая сложная задача. Во-первых, считается, что силы возникают благодаря внутреннему обмену частицами определенного сорта, такую модель придумал Юкава, а частицы назвали пионами. Предположим, вы ударяете протонами по ядру — протон является одной из частиц, входящих в состав ядра, — протоны будут выбивать пионы, и они будут, конечно, вырываться наружу, испускаться.

Испускаются не только пионы, но и другие частицы — и мы придумываем им имена, пока они не иссякнут, — каоны и сигма, лямбда и прочие. Все они теперь называются адронами, и, если увеличивать энергию реакции, вы получите все больше и больше частиц, до сотен различных частиц; проблема, в период от 1940–1950 годов и до наших дней, без сомнения, состояла в том, чтобы найти заложенную в их основе структуру. Казалось бы, среди этих частиц должно существовать множество интереснейших связей и структур, пока теория не нашла объяснения их строения, — все эти частицы состоят из чего-то еще — и это что-то мы назвали кварками. Например, три кварка образуют протон, а протон — одна из частиц ядра; другая частица ядра — нейтрон. Существуют несколько кварков — сначала фактически были нужны только три кварка, чтобы объяснить все разнообразие сотен частиц, эти три различных кварка назвали кварками u-типа, d-типа и s-типа. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из двух d-кварков и одного u-кварка. Если бы кварки двигались внутри различными путями, они представляли бы некоторую другую частицу. Тогда возникает вопрос: каково точное поведение кварков и что удерживает их вместе? Теория предположительно очень проста, очень близка аналогия с квантовой электродинамикой — не полностью, но очень похожа — кварки подобны электрону, а частицы, названные глюонами, которые курсируют между кварками, заставляя их притягиваться друг к другу, подобны фотону, который тоже путешествует между электронами, создавая электромагнитные силы. И математика здесь очень похожа, но содержит несколько немного отличающихся членов. Разгаданное различие в форме уравнений привело к разгадке принципов такой красоты и простоты, что их никак нельзя считать случайными, они очень и очень определенные. Пока не выяснено, сколько существует различных видов кварков[5].

Тут есть кардинальное отличие от электродинамики, в которой два электрона могут расходиться сколь угодно далеко, а когда они далеки друг от друга, то силы между ними, в сущности, становятся совсем ничтожными. Если бы это было справедливо для кварков, то мы ожидали бы, что, когда достаточно сильно ударяешь по какой-либо ядерной частице (адрону), должны испускаться кварки. Однако вместо этого, когда проводятся эксперименты при энергии, достаточной для вылета кварков, вы обнаруживаете большую струю — иначе говоря, много частиц, идущих в том же направлении, что и первоначальные адроны, но в струе нет кварков — и это требование теории: когда вылетают кварки, они образуют что-то вроде новых пар кварков, они входят в состав маленьких групп кварков, представляющих адроны.

Вопрос, почему существуют такие отличия от электродинамики, как работает это малое различие в математических формулах, эти малые члены, которые незначительно изменяют уравнения, но приводят к таким различающимся эффектам, к полностью иным эффектам? То, что происходит в реальности, было действительно удивительным для большинства ученых, и первое, что приходит в голову, что теория неправильна. Но чем больше ею занимались, тем яснее становилось, что, по-видимому, виной всему оказываются именно эти дополнительные члены, приводящие к таким различающимся эффектам. Теперь мы полагаем, что физика претерпевает кардинальные изменения. Мы имеем теорию, полную и вполне определенную теорию всех этих адронов, и у нас есть огромное количество экспериментальных данных с кучей подробностей — почему же мы не можем немедленно проверить теорию, обнаружить, правильна она или нет? Потому что нам нужно вычислить следствия теории. Если теория верна, что должно произойти и как это произойдет? В данный момент трудность заключается в первом шаге. Математика, необходимая для разгадывания следствий теории, в настоящее время непреодолимо сложна. В настоящее время — да! И поэтому очевидно, какова моя задача. Моя задача — попытаться разработать способ доведения теории до числа, тщательно ее проверить, не просто качественно, а увидеть, может ли она привести к правильным результатам.


Еще от автора Ричард Филлипс Фейнман
«Вы, конечно, шутите, мистер Фейнман!»

Книга рассказывает о жизни и приключениях знаменитого ученого-физика, одного из создателей атомной бомбы, лауреата Нобелевской премии, Ричарда Филлипса Фейнмана. Эта книга полностью изменит ваш взгляд на ученых; она рассказывает не об ученом, который большинству людей представляется сухим и скучным, а о человеке: обаятельном, артистичном, дерзком и далеко не таком одностороннем, каковым он смел себя считать. Прекрасное чувство юмора и легкий разговорный стиль автора сделает чтение книги не только познавательным, но и увлекательным занятием.Для широкого круга читателей.


КЭД – странная теория света и вещества

Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!».


Электродинамика

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фейнмановские лекции по физике. Современная наука о природе

В свое время преподаватели Калифорнийского технологического университета задумались о том, как можно было бы перестроить курс физики, чтобы сделать его более занимательным и современным. Изложение материала в старых учебниках было настолько скучным, что отбивало охоту к учению даже у самых усердных студентов. Ричард Фейнман с энтузиазмом подхватил эту идею и разработал новый, авторский курс лекций по общей физике. Читая эти лекции, он, по его собственным словам, ориентировался на самых сообразительных и одаренных, однако постарался учесть интересы и того студента, которого весь этот фейерверк мыслей может встревожить и отпугнуть, и выстроил материал таким образом, чтобы даже у этого студента осталось в голове основное ядро и понимание того, что он может получить в перспективе, продолжив изучение физики на более серьезном уровне.


Наука, не-наука и все-все-все

Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc.


Рекомендуем почитать
Социально-культурные проекты Юргена Хабермаса

В работе проанализированы малоисследованные в нашей литературе социально-культурные концепции выдающегося немецкого философа, получившие названия «радикализации критического самосознания индивида», «просвещенной общественности», «коммуникативной радициональности», а также «теоретиколингвистическая» и «психоаналитическая» модели. Автором показано, что основной смысл социокультурных концепций Ю. Хабермаса состоит не только в критико-рефлексивном, но и конструктивном отношении к социальной реальности, развивающем просветительские традиции незавершенного проекта модерна.


Пьесы

Пьесы. Фантастические и прозаические.


Краткая история пьянства от каменного века до наших дней. Что, где, когда и по какому поводу

История нашего вида сложилась бы совсем по другому, если бы не счастливая генетическая мутация, которая позволила нашим организмам расщеплять алкоголь. С тех пор человек не расстается с бутылкой — тысячелетиями выпивка дарила людям радость и утешение, помогала разговаривать с богами и создавать культуру. «Краткая история пьянства» — это история давнего романа Homo sapiens с алкоголем. В каждой эпохе — от каменного века до времен сухого закона — мы найдем ответы на конкретные вопросы: что пили? сколько? кто и в каком составе? А главное — зачем и по какому поводу? Попутно мы познакомимся с шаманами неолита, превратившими спиртное в канал общения с предками, поприсутствуем на пирах древних греков и римлян и выясним, чем настоящие салуны Дикого Запада отличались от голливудских. Это история человечества в его самом счастливом состоянии — навеселе.


Петр Великий как законодатель. Исследование законодательного процесса в России в эпоху реформ первой четверти XVIII века

Монография, подготовленная в первой половине 1940-х годов известным советским историком Н. А. Воскресенским (1889–1948), публикуется впервые. В ней описаны все стадии законотворческого процесса в России первой четверти XVIII века. Подробно рассмотрены вопросы о субъекте законодательной инициативы, о круге должностных лиц и органов власти, привлекавшихся к выработке законопроектов, о масштабе и характере использования в законотворческой деятельности актов иностранного законодательства, о законосовещательной деятельности Правительствующего Сената.


Вторжение: Взгляд из России. Чехословакия, август 1968

Пражская весна – процесс демократизации общественной и политической жизни в Чехословакии – был с энтузиазмом поддержан большинством населения Чехословацкой социалистической республики. 21 августа этот процесс был прерван вторжением в ЧССР войск пяти стран Варшавского договора – СССР, ГДР, Польши, Румынии и Венгрии. В советских средствах массовой информации вторжение преподносилось как акт «братской помощи» народам Чехословакии, единодушно одобряемый всем советским народом. Чешский журналист Йозеф Паздерка поставил своей целью выяснить, как в действительности воспринимались в СССР события августа 1968-го.


Сандинистская революция в Никарагуа. Предыстория и последствия

Книга посвящена первой успешной вооруженной революции в Латинской Америке после кубинской – Сандинистской революции в Никарагуа, победившей в июле 1979 года.В книге дан краткий очерк истории Никарагуа, подробно описана борьба генерала Аугусто Сандино против американской оккупации в 1927–1933 годах. Анализируется военная и экономическая политика диктатуры клана Сомосы (1936–1979 годы), позволившая ей так долго и эффективно подавлять народное недовольство. Особое внимание уделяется роли США в укреплении режима Сомосы, а также истории Сандинистского фронта национального освобождения (СФНО) – той силы, которая в итоге смогла победоносно завершить революцию.