Радио на службе у человека - [6]
Вспомните, как возникают звуковые колебания. Если вы ударите камертон о что-либо твёрдое, то его ножки придут в движение. Это движение состоит в том, что ножки камертона изгибаются; благодаря этому возникают силы, стремящиеся вернуть ножки камертона обратно. Когда силы станут наибольшими, ножки на мгновение останавливаются, а затем движутся к своему обычному положению, постепенно набирая скорость. Как только ножки приходят в обычное положение, изгиб исчезает; перестают действовать и силы, возвращавшие ножки обратно. Но ножки камертона не останавливаются, так как всякое движущееся тело не может само по себе остановиться. Они проскакивают через нормальное положение снова, изгибаясь при этом, но в обратную сторону; благодаря изгибу снова возникают силы, тормозящие движение ножек, и всё описанное явление возобновляется. Понятно, что уследить глазами за движением ножек камертона трудно, так как он колеблется очень быстро.
Движение ножек камертона происходит, повторяясь через равные промежутки времени, но довольно быстро прекращается благодаря отдаче звука в окружающее пространство. Чтобы долгое время поддерживать это движение, нужно давать камертону толчки со стороны.
Для создания электромагнитных колебаний, как уже было сказано, применяют электрический колебательный контур (рис. 8,а). Контур также можно «подтолкнуть», если послать на конденсатор электрические заряды (рис. 8,б). В этом случае на нижней металлической пластине конденсатора создаётся избыток электронов. Избыток этот будет стремиться равномерно распределиться между обеими пластинами — к верхней пластине двинется поток электронов. Но, не имея возможности двигаться в воздухе, отделяющем пластины друг от друга, так как воздух — непроводник, они придут в движение по проволокам и катушке. Возникает ток. Электрический ток создаст магнитные силы (это показано на рис. 8,в). Через очень короткое время избыточные заряды на конденсаторе исчезнут, но движение зарядов в катушке будет продолжаться (подобно тому, как ножка камертона не останавливается в положении равновесия, а проскакивает через него). Постепенно и магнитные силы, и ток ослабевают, так как на верхней пластине конденсатора скопляются заряды, препятствующие дальнейшему течению тока (срав — ните с силами изгиба, постепенно останавливающими ножку камертона). В конце концов ток и магнитные силы исчезают, а конденсатор вновь оказывается заряженным (рис. 8,г). Но теперь избыток электронов имеется уже не на нижней, а на верхней пластине. Затем конденсатор снова начинает разряжаться, но теперь ток уже идёт в обратном направлении (рис. 8, д). Снова произойдёт перезарядка конденсатора, и этот процесс будет размеренно повторяться. Но так как катушка сделана из проволоки, а ток, текущий по проволоке, нагревает её, то при описанных электрических колебаниях будет выделяться тепло; благодаря этому колебания будут ослабевать и вскоре прекратятся совсем.
Период этих колебаний зависит от свойств и размеров катушки и конденсатора. В радиотехнических установках периоды колебаний не превышают обычно миллионных долей секунды, а весь колебательный процесс, если его не «подталкивать» извне, способен длиться только десятитысячные доли секунды.
Чтобы поддерживать колебания камертона долгое время, его нужно подталкивать сравнительно редко, так как он может колебаться от одного толчка много секунд. Это нетрудно осуществить разными механическими способами. Но как быть в случае электромагнитных колебаний контура, где колебания существуют только десятитысячные доли секунды? Где найти способ, позволяющий «подталкивать» контур достаточно часто?
Задачу эту позволила разрешить так называемая электронная лампа, изобретённая в начале нашего столетия и победоносно завоевавшая в настоящее время все области радиосвязи, так как возможности применения этой лампы оказались поистине неисчислимыми.
2. ЭЛЕКТРОННАЯ ЛАМПА
Простейшая электронная лампа (рис. 9) представляет собой стеклянный пузырь, или, как его называют, баллон, из которого тщательно удалён воздух. В баллон впаяны три электрода: 1) сплошной металлический цилиндр; 2) цилиндр из спиральной сетки, расположенный внутри металлического цилиндра, и 3) металлическая нить, которая протянута по оси, общей для обоих цилиндров.
От каждого из электродов сделаны металлические выводы наружу баллона, причём у нити имеются два вывода. Нить нагревается током от электрической батареи; благодаря этому с поверхности нити вылетают электроны. Снаружи лампы металлический цилиндр и нить через катушку и конденсатор электрического контура соединены с другой электрической батареей (см. рис. 9). Под действием этой батареи между металлическим цилиндром и нитью внутри лампы возникают электрические силы, увлекающие к цилиндру электроны. В результате во всей цепи, т. е. внутри лампы и в металлических проводах снаружи, возникает электрический ток. Сеточный цилиндр соединён, кроме того, со вспомогательной катушкой; она находится рядом с главной катушкой.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.