Радио на службе у человека - [5]

Шрифт
Интервал

Действительно, раз при изменении тока пластинка притягивается с неодинаковой силой, значит, магнитные силы, действующие на неё со стороны катушки, меняются. Но ведь ток в катушке создаётся электрическими силами, и если он меняется, то это происходит благодаря изменению электрических сил. Следовательно, изменение электрических сил вызывает изменение магнитных сил.

3. ОТКРЫТИЕ МАКСВЕЛЛА

После смерти Фарадея учёный Максвелл, изучая электрические и магнитные явления, пришёл в 1867 r. к важному заключению. Он доказал, что если где-нибудь меняются электрические силы, то по соседству обязательно возникнут магнитные силы; изменения же магнитных сил в свою очередь создадут по соседству новые электрические силы, и так далее. Начавшись в одном месте, это явление передаётся в «окрестности», оттуда — опять в соседние места и таким образом распространяется всё дальше и дальше, подобно тому как волна, возникшая на воде, распространяется по её поверхности.

Если первоначальные изменения (колебания) электрических и магнитных сил повторялись с определённым периодом, то и изменения электрических и магнитных сил в окружающем пространстве будут происходить также с определённым периодом. В пространстве образуется «электромагнитная волна». Она распространяется, как показали расчёты Максвелла, с громадной скоростью — 300000 километров в секунду. Эта скорость равна скорости распространения света.

Такая скорость удивительно велика. От Москвы до Ленинграда волна проходит только за одну пятисотую долю секунды! Расстояние от Земли до Луны электромагнитная волна проходит в 1>1>4, секунды, а от Земли до Солнца — около 8 минут.

Так как электрические и магнитные силы могут существовать в воздухе и даже в безвоздушном пространстве, то никаких проволок для передачи электромагнитных волн на расстояние не требуется.

В 1887 г. работавший в Германии физик Генрих Герц (потомки которого были изгнаны Гитлером из Германии за своё не чисто немецкое происхождение) научился получать электромагнитные волны и наблюдать их в окружающем пространстве на расстоянии нескольких метров от их источника — от проволоки.

Так как электромагнитные волны не действуют на наши органы чувств, то для обнаружения их приходилось пользоваться специальными приборами. Период колебаний этих волн был поразительно мал: он составлял всего лишь стомиллионные доли секунды (следовательно, длина волны измерялась десятками сантиметров).

4. ПЕРВАЯ РАДИОГРАММА

52 года назад, 7 мая 1895 г. русский учёный Александр Степанович Попов впервые показал на научном заседании в Петербурге (теперь Ленинграде) свой замечательный прибор, который отмечал на расстоянии до 40 километров электромагнитные волны, создаваемые в воздухе электрическими грозовыми разрядами — молнией. Этот прибор (рис. 6) был первым приёмником электромагнитных волн, или, как их теперь чаще называют, радиоволн. Попов назвал его грозоотметчиком.

Показывая учёным свой грозоотметчик, Попов сказал: «Если удастся изобрести достаточно мощные источники электромагнитных волн, то станет возможна связь без каких бы то ни было проводов на значительных расстояниях».

И уже меньше чем через год, 24 марта 1896 г. Попов вместе со своим помощником, ныне здравствующим П. Н. Рыбкиным, передал первую в мире радиограмму. Источник волн, т. е. передатчик, был расположен в 200 метрах от усовершенствованного грозоотметчика — приёмника. Рыбкин вёл передачу, а Галопов вместе с крупнейшими русскими учёными следил за тем, как обычный телеграфный аппарат, присоединённый к грозоотметчику, букву за буквой записывал слова первой радиограммы: «Генрих Герц».


>Рис. 6. Грозоотметчик Попова.

После этого Попов начал добиваться увеличения дальности действия своего «беспроволочного телеграфа», в настоящее время называемого радиотелеграфом. Спустя четыре года, в 1899 г., в военно — морском флоте России уже действовал радиотелеграф, который позволял поддерживать связь на расстояниях до 30 километров.

«Радио» означает по-русски «луч». Так как радиопередатчик «излучает» в пространство волны, то беспроволочную телеграфию и назвали «радиотелеграфией», т. е. телеграфией при помощи излучения. Постепенно это слово вошло в обиход и потеряло своё окончание, люди стали говорить просто «радио».

III. КАК ПЕРЕДАЮТСЯ И ПРИНИМАЮТСЯ РАДИОВОЛНЫ

1. ВОЗБУДИТЕЛЬ РАДИОВОЛН

Для телеграфирования без проводов нужно осуществить следующие основные операции:

1. Создать электромагнитные колебания.

2. Послать возбуждаемую этими колебаниями электромагнитную волну в пространство, т. е. послать сигнал.

3. Произвести приём сигнала.

Рассмотрим эти операции поочерёдно.

Подобно тому, как для создания звуковых волн в воз — духе применяют тела, способные совершать колебания (камертон, струна) и отдающие (излучающие) в воздух часть своей энергии в виде звуковых волн, в радиотехнике для возбуждения электромагнитных волн в пространстве применяют так называемый «электрический колебательный контур». Он состоит из проволочной катушки и конденсатора. Если по катушке пропускать электрический ток, то внутри неё создаются значительные магнитные силы. Конденсатор (рис. 7) представляет собой две металлические пластины, разделённые каким-либо непроводником, например, воздухом или слюдой. В пространстве между этими пластинами могут возникать большие электрические силы.


Рекомендуем почитать
Лето: Секреты выживания растений и животных в сезон изобилия

Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.


История викингов. Дети Ясеня и Вяза

Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.


Дарвин в городе: как эволюция продолжается в городских джунглях

Голуби, белки, жуки, одуванчики – на первый взгляд городские флора и фауна довольно скучны. Но чтобы природа заиграла новыми красками, не обязательно идти в зоопарк или включать телевизор. Надо просто знать, куда смотреть и чему удивляться. В этой книге нидерландский эволюционный биолог Менно Схилтхёйзен собрал поразительные примеры того, как от жизни в городе меняются даже самые обычные животные и растения. В формате PDF A4 сохранен издательский макет.


Всё об искусственном интеллекте за 60 минут

Жить в современном мире, не взаимодействуя с искусственным интеллектом и не подвергаясь его воздействию, практически невозможно. Как так получилось? И что будет дальше? Меняют ли роботы наш мир к лучшему или создают еще больше проблем? Ответы на эти и другие вопросы, а также историю развития ИИ – от истоков и мотивации его зарождения до использования умных алгоритмов – вы найдете на страницах книги Питера Дж. Бентли, эксперта в области искусственного интеллекта и известного популяризатора науки. Для широкого круга читателей.


Фон-Визин

«Представляемая мною в 1848 г., на суд читателей, книга начата лет за двадцать пред сим и окончена в 1830 году. В 1835 году, была она процензирована и готовилась к печати, В продолжение столь долгого времени, многие из глав ее напечатаны были в разных журналах и альманахах: в «Литературной Газете» Барона Дельвига, в «Современнике», в «Утренней Заре», и в других литературных сборниках. Самая рукопись читана была многими литераторами. В разных журналах и книгах встречались о ней отзывы частию благосклонные, частию нет…».


Бой 28 июля 1904 года

Бой 28 июля 1904 г. — один из малоисследованых и интересных боев паровых броненосных эскадр. Сражение в Желтом море (японское название боя 28.07.1904 г.) стало первым масштабным столкновением двух противоборствующих флотов в войне между Россией и Японией в 1904–05 гг. Этот бой стал решающим в судьбе русской 1-й эскадры флота Тихого океана. Бой 28.07.1904 г. принес новый для XX века боевой опыт планирования, проведения морских операций в эпоху брони и пара, управления разнородными силами флота; боевого использования нарезной казнозарядной артиллерии с бездымным порохом и торпедного оружия.


На чем Земля держится

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.