Пятьсот двадцать головоломок - [78]
368. В первом случае передвигайте пары в следующем порядке: поместите 6 и 7 перед 1, затем 3 и 4, 7 и 1 и 4 и 8 на свободные места. При этом получится следующее расположение фишек: 6, 4, 8, 2, 7, 1, 5, 3.
Во втором случае передвиньте фишки 3, 4 и расположите их в обратном порядке (4, 3) перед фишкой 1. Затем переместите, одновременно изменив порядок фишек на обратный, пары 6, 7 (после перестановки 7, 6), 6, 5 (после перестановки 5, 6), 3, 1 (после перестановки 1, 3) и 6, 8 (после перестановки 8, 6). Фишки выстроятся в последовательности 4, 8, 6, 2, 7, 1, 3, 5 всего за 5 ходов.
369. Хотя первоначально обе буквы A находятся в нужном положении, головоломку можно решить, только сдвинув их со своего места. Обозначим букву A в нижнем ряду прописной, а в верхнем углу строчной буквой. Тогда решение в 36 ходов будет таким: АНЛЕЖ АНЖКИ АНЖКИ АНЖКЛ ЕаАНЖ ИЛКИЛ аЕКаЛИ.
[Решение Дьюдени не минимально. Не сможет ли читатель решить головоломку за 30 ходов? — М. Г.]
370. Передвигайте фишки в следующем порядке: АНДАФ ЛНДАФ ДНЛДИ ЯДЛНА ФИЯРИ ЯЛНАЛ — всего 30 ходов.
[Количество ходов удается сократить до наименьшего возможного числа — 28. Читатели могут заметить, что задача изоморфна некоторой головоломке с квадратом и восьмью фишками, похожей на предыдущую. С общей теорией головоломок с квадратом и фишками можно познакомиться в гл. 2 книги М. Гарднера «Математические головоломки и развлечения» (М., изд-во «Мир», 1971). — М. Г.]
371. Охранник W>1, не может схватить узника P>2, а охранник W>2 — узника P>1. В примере, который мы привели, погоня действительно может продолжаться бесконечно долго, поскольку на самом деле каждый охранник должен охотиться не за «своим», а за «чужим» узником. В этом случае, как говорят о шахматах, можно «реализовать преимущество». Между W>1 и P>2 расположен всего один (нечетное число) квадрат, в то время как между W>1 и P>1 (а также между W>2 и P>2) имеются четыре (четное число) квадрата. Во втором случае у охранников имеется преимущество, и они могут выиграть. Приведем образец игры. Ходы охранников записываются в «числителе», а узников — в «знаменателе»:
Узникам невозможно уйти от преследования, если каждый охранник преследует того из них, кого нужно.
372. В средней вертикали, содержащей 3 белые и 3 черные шашки, их можно поменять местами за 15 ходов. Перенумеруйте 7 клеток сверху вниз цифрами от 1 до 7. Шашкой, стоящей на клетке 3, пойдите на клетку 4, шашкой 5 — на клетку 3, 6 — на 5, 4 — на 6, 2 — на 4, 1 — на 2, 3 — на 1, 5 — на 3, 7 — на 5, 6 — на 7, 4 — на 6, 2 — на 4, 3 — на 2, 5 — на 3, 4 — на 5. Шесть из этих ходов представляют собой просто сдвиги, а 9 остальных — прыжки.
Имеется семь горизонталей, содержащих по 3 белые и по 3 черные шашки (если исключить центральную вертикаль). В каждой из них можно аналогичным образом поменять местами белые и черные шашки, а поскольку в процессе манипуляций с центральной вертикалью в центре каждой из горизонталей образуется в определенный момент необходимое для этого «окошко», то ясно, что все шашки можно поменять местами за 8 × 15 = 120 ходов.
373. Сначала положите 4 монеты вместе, как показано в случае 1, затем перенесите номер 1 на новое место (см. случай 2) и, наконец, осторожно выньте номер 4 и положите его сверху на номера 2 и 3. Тогда ваши монеты займут положение 3 и пятую монету можно будет точно подогнать к ним.
Одного взгляда на рисунок достаточно, чтобы понять, как трудно измерить на глаз расстояние между монетами 1 и 3. Почти наверняка каждый положит их слишком близко друг к другу.
374. Сначала разместите монеты так, как показано в случае A. Затем осторожно сместите монету 6 в положение, которое изображено в случае B. Далее сделайте так, чтобы монета 5 соприкоснулась с монетами 2 и 3 (C). Теперь нужно переместить монету 3 в положение, указанное в случае C пунктиром.
375. Взяв вместо чисел 2 и 15 числа 7 и 10, можно составить квадрат, показанный на рисунке. Практически магический квадрат пы составите из любых 16 чисел, если их удастся расположить таким образом, чтобы были равны между собой как все разности между двумя соседними числами по горизонтали, так и все разности между двумя соседними числами по вертикали. В нашем случае эти разности равны 3 и 2:
1 | 4 | 7 | 10 |
3 | 6 | 9 | 12 |
5 | 8 | 11 | 14 |
7 | 10 | 13 | 16 |
376. Если вы сделаете 9 квадратов, совпадающих с квадратом, изображенным на нашем рисунке, то, составив из них больший квадрат, обнаружите на нем магические квадраты пятого порядка с любым числом в центре. Этот квадрат называется назикским квадратом (названным так покойным мистером Фростом в честь Назика — места в Индии, где он жил) и является единственным правильным квадратом с таким свойством.
377. По-видимому, существует всего три приведенных здесь решения. В каждом случае разность равна 5.
378. Для решения головоломки необходимо лишь сдвинуть вверх правую цифру в каждой клетке, чтобы получить степени 2. Раскрыв чти степени, вы обнаружите, что полученный квадрат удовлетворяет нужному условию с произведением 4096. Разумеется, всякий человек, знакомый с арифметикой, знает, что 2>0 равно 1.
379. Хотя требовалось, чтобы цифры в каждой клетке были различными, это вовсе не значило, что различными должны быть
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.