Пятьсот двадцать головоломок - [7]

Шрифт
Интервал

60. Езда в ветреную погоду. Велосипедист проезжает километр за 3 мин, если ветер дует в спину, и за 4 мин, если ехать приходится против встречного ветра. За сколько времени он проедет 1 км, если ветер утихнет? Кто-нибудь, возможно, скажет, что, поскольку среднее арифметическое 3 и 4 равно 3½ велосипедисту потребуется 3½ мин, однако такое решение неверно.

61. Головоломка с гребцами. Команда гребцов может пройти на своей лодке данное расстояние против течения за 8

мин. В отсутствие течения это же расстояние она проходит за время на 7 мин меньше, чем то, которое потребуется, чтобы пройти его по течению. За сколько минут команда проходит данное расстояние по течению?

62. Эскалатор. Находясь на одном из эскалаторов лондонского метро, я обнаружил, что, прошагав 26 ступенек, я спустился бы до платформы за 30 с. Но если бы я прошагал 34 ступеньки, весь спуск занял бы 18 с. Сколько ступенек в эскалаторе? Время измеряется от момента, когда верхняя ступенька начинает опускаться, до того момента, когда я схожу с последней ступеньки на платформу.

63. Один велосипед на двоих. Двум братьям нужно было отправиться в путь и прибыть в пункт назначения одновременно. У них был только один велосипед, на котором они ехали по очереди, причем тот, кто ехал, когда истекало его время, слезал с велосипеда и, оставив его у забора, шел вперед пешком, не ожидая брата, а тот, кто шел сзади, дойдя до этого места, подбирал велосипед и ехал свое время и т. д. Где им лучше всего меняться велосипедом? Если скорости движения пешехода и велосипедиста одинаковы, то решить задачу крайне легко. Следует просто разделить путь на четное число участков равной длины и меняться велосипедом в конце каждого такого участка, который можно определить, например, по счетчику расстояния. В этом случае каждый из братьев половину пути пройдет пешком, а половину проедет на велосипеде.

Но вот аналогичная задача, которая решается не столь просто. Андерсон и Браун должны преодолеть расстояние в 20 км и одновременно прибыть в пункт назначения. У них один велосипед на двоих. Андерсон проходит пешком лишь 4, а Браун — 5 км/ч. Зато на велосипеде Андерсон едет со скоростью 10, а Браун лишь 8 км/ч. Где им надо меняться велосипедом? Каждый из них или едет, или идет пешком, не делая в пути ни одного привала.

64. Снова о велосипеде. Дополним условие предыдущей задачи третьим участником, который пользуется тем же велосипедом. Предположим, что Андерсон и Браун взяли с собой человека по имени Картер. Они делают пешком соответственно по 4,5 и 3 км/ч, а на велосипеде — по 10, 8 и 12 км/ч. Как им следует пользоваться велосипедом, чтобы преодолеть за одно и то же время расстояние 20 км?

65. Мотоцикл с коляской. Аткинс, Болдуин и Кларк решили совершить путешествие. Их путь составит 52 км. У Аткинса есть мотоцикл с одноместной коляской. Он должен подвезти одного из своих товарищей на какое-то расстояние, высадить его, чтобы тот дальше шел пешком, вернуться назад, подобрать другого товарища, который вышел одновременно с ними, и поехать дальше так, чтобы все трое прибыли в пункт назначения в одно и то же время. Как это сделать?

Скорость мотоцикла 20 км/ч, Болдуин может идти пешком со скоростью 5, а Кларк — 4 км/ч. Разумеется, каждый старается двигаться как можно быстрее и в пути нигде не задерживается.

Задачу можно было бы усложнить введением большего числа пассажиров, а в нашем случае она настолько упрощена, что даже все расстояния выражаются целым числом километров.

66. Связной. Армейская колонна длиной 40 км проходит 40 км. Сколько километров проделает связной, посланный с пакетом из арьергарда в авангард и возвратившийся назад?

67. Два поезда. Два железнодорожных состава, один длиной 400, а другой 200 футов, движутся по параллельным путям. Когда они движутся в противоположных направлениях, то каждый проходит мимо другого за 5 с, а когда они идут в одном направлении, то более быстрый проходит мимо другого за 15 с. Один любопытный пассажир, используя эти данные, сумел определить скорость обоих поездов[5].

68. От Пиклминстера до Квиквилля. Два поезда А и В отправляются из Пиклминстера в Квиквилль одновременно с поездами С и D, отправляющимися из Квиквилля в Пиклминстер. Поезд А встречает поезд С за 120 миль, а поезд D за 140 миль от Пиклминстера. Поезд В встречает поезд С за 126 миль от Квиквилля, а поезд D — на полпути между Пиклминстером и Квиквиллем. Каково расстояние от Пиклминстера до Квиквилля? Все поезда идут с постоянными скоростями, не слишком отличающимися от обычных.

69. Неисправный паровоз. Мы отправились по железной дороге из Англчестера в Клинкертон. Но через час после того, как поезд тронулся, обнаружилась неисправность паровоза. Нам пришлось продолжать путешествие со скоростью, составлявшей ¾ первоначальной. В результате мы прибыли в Клинкертон с опозданием на 2 ч, а машинист сказал, что если бы поломка произошла на 50 миль дальше, то поезд пришел бы на 40 мин раньше.

Каково расстояние от Англчестера до Клинкертона?

70. Головоломка с бегунами. Два человека бегут по кругу в противоположных направлениях. Браун — лучший бегун — дал Томкинсу фору в ⅛ дистанции, но переоценил свои силы: пробежав ⅙ дистанции, он встретил Томкинса и понял, что его собственные шансы на успех весьма малы.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Кентерберийские головоломки

Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.