Пятьдесят занимательных вероятностных задач с решениями - [7]
Наконец, пусть на всех костях выпало одно и то же число, скажем, 1, 1, 1. Тогда игорный дом выплачивает сумму, равную утроенной ставке, из денег, поставленных на номера 2, 3, 4, оставляя себе ставки, соответствующие номерам 5 и 6. В этом случае потеря игрока, рискующего одной ставкой, равна 2/6. Любопытно заметить, что в среднем игроки теряют больше всего в случаях двух и трехкратной выплаты.
Для определения среднего ущерба, соответствующего единичной ставке, нужно найти вероятности рассмотренных случаев. Пусть игральные кости различаются по цвету, скажем, красная, зеленая и синяя. Они могут выпасть 6·6·6 = 216 способами.
Скольким из этих способов отвечают три различных номера? Если для красной кости имеется 6 вариантов, то для зеленой уже только 5, так как номер, выпавший на красной кости, не должен повториться. Зеленая кость может выпасть по аналогичным соображениям лишь одной из четырех граней, отличных от предыдущих. Итак, всего существует 6·5·4 = 120 возможных вариантов.
Оставим на время второй случай и перейдем к рассмотрению третьего — когда выпадает три одинаковых номера. Число таких вариантов равно 6, так как красная кость может выпасть шестью различными способами, зеленая же и синяя только одним, а именно тем, которым выпала красная.
Это означает, что существует 216 − 126 = 90 комбинаций, при которых выпадает ровно два одинаковых номера. В этом, впрочем, можно убедиться и непосредственно. Возможны следующие сочетания костей с одинаковыми номерами: красно-зеленая, красно-синяя и зелено-синяя. Для нахождения общего числа комбинаций определим число возможных вариантов, скажем, для сочетания красно-зеленая, и умножим его на три. Красная кость может выпасть шестью способами, зеленая — только одним и синяя — пятью, т. е. всего существует 30 таких вариантов. Окончательный результат 3·30 = 90 совпадает с почученным ранее.
Средний ущерб получается суммированием произведений вероятностей отдельных случаев на ущерб, им соответствующий:
120/216 · 0 + 90/216 · 1/6 + 6/216 · 2/6 = 17/216 ≈ 0.079[5].
Итак, в среднем игрок теряет 8 % своей ставки. Учитывая, что игра продолжается около 30 секунд, а по государственным облигациям выплачивается менее 4 % доли прибыли за год, такую игру можно назвать чудовищно несправедливой.
Проведенные расчеты верны лишь для правильных костей. Иногда вместо костей употребляется крутящееся колесо со стрелкой, которое после остановки показывает на участок окружности, отвечающий определенной комбинации из трех цифр. При этом относительные длины этих участков плохо согласуются с вероятностями появления соответствующих комбинаций при подбрасывании костей. Наблюдения показывают, что для таких колес двух- и трехкратные выплаты встречаются чаще и, значит, средний ущерб еще больше.
7. Решение задачи о переубеждении упрямого игрока
Если Браун выиграет хоть один раз за 36 игр, он не потерпит убытка. Вероятность проиграть все 36 раз равна
Математическое ожидание выигрыша в одной игре есть
а в 36 играх:
При игре против благожелательного друга математическое ожидание выигрыша Брауна равно
20·0.617 − 20·0.383 = 4.68.
В итоге Браун в среднем получит 4.68 − 1.89 = 2.79 доллара за 36 игр и будет в выигрыше. Возможно, доброжелательный друг будет сам переубежден. Разумеется, если Браун проиграет все 36 игр, то потеряет 56 долларов, что весьма неприятно.
8. Решение задачи о «масти» при игре в бридж
Эта вероятность ничтожно мала. Так как колода хорошо перетасована, можно считать, что 13 карт сняты сверху. Для получения 13 карт одной масти нужно, вытащив сначала любую из 52 карт, извлечь затем все карты той же масти (которых всего 13 штук). Итак, число способов получения «масти» равно
52·12·11·10·9·8·7·6·5·4·3·2·1 = 52·12!
Общее же число способов извлечения 13 карт из 52 равно
52·51·50·49·48·47·46·45·44·43·42·41·40 = 52!/39!
Искомая вероятность равна 52·12!/(52!/36!) = 12!·39!/51! Обратная величина может трактоваться как среднее число игр до появления «масти».
Из таблиц[6] находим:
lg 12! = 8.68034, lg 51! = 66.19065,
lg 39! = 46.30959, lg (12!·39!) = 54.98993,
lg (12!·39!) = 54.98993, lg(12!·39!/51!) = 11.20072,
12!·39!/51! = 1.588·10>−11.
При вычислениях такого рода точный ответ часто приводит в замешательство. Что из того, что в одном из 160 миллиардов случаев имеется возможность получить «масть»? Сколь часто должны мы были бы слышать о таком событии? Явно завышая числа, предположим, что в США в бридж играют 10 миллионов, и что каждый игрок играет 10 раз всякий день в году. Это дает 36½ миллиардов игр в год, так что исключительную сдачу можно ожидать один раз в 4 года (причем о некоторых из них заведомо не будет объявлено публично). Даже в два раза большее количество игроков, которые играют к тому же в два раза чаще, привело бы лишь к одной такой сдаче в течение года.
Чем можно объяснить значительную большую частоту сообщений о появлении «масти»? Многими причинами, среди которых следует назвать склеивание карт и плохое тасование. (Нашумевший случай «масти», действительно имевший место, произошел при первой раздаче новой колоды.)
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.