Пятьдесят занимательных вероятностных задач с решениями - [15]
Найдем среднее число рабочих дней. Каждый день является либо рабочим либо нет. Заменим для общности 365 на N и обозначим через n число рабочих на фабрике. Тогда вероятность того, что первый день в году — рабочий, равна (1 − 1/N)>n, так как в этом случае все рабочие родились в один из других N − 1 дней. Средний вклад первого дня в трудоднях равен
Это число одинаково для всех дней, так что среднее число человеко-дней, отработанных в году, при n рабочих на фабрике равно n·N·(1 − l/N)>n. Для максимизации этой функции от n надо найти значение n, для которого
и
Первое неравенство означает, что
или
N ≤ n + 1.
второе, что
Отсюда получаем n ≤ N ≤ n + 1 и, значит, или n = N, или же n = N − 1. Подставляя эти значения n в формулу для среднего числа человеко-дней, мы получаем N²·(1 − 1/N)>N и (N − 1)·N·(1 − 1/N)N − 1 т. е. равные величины. Так как N-й человек не изменяет положения дел, на фабрике должно быть N − 1 рабочих. В силу соотношения (1 − 1/N)>N ≈ e>−1 среднее число трудодней приблизительно равно N²·e>−1. Если бы все N человек работали каждый день, то число трудодней равнялось бы N², так что e>−1 равняется среднему отношению числа действительно проработанных дней к потенциально возможному N². Оно приблизительно равно 0.37. Итак, на фабрике работает 364 человека, и число рабочих дней приблизительно равно 49 (если считать, что других выходных нет). 364-й рабочий вкладывает в среднем только 0.37 дня в общее число трудодней. Рабочая сила должна быть очень дешева в этом городе!
35. Решение задачи «На краю утеса»
Перед решением задачи полезно задуматься о возможном ответе. Посмотрим, что может случиться на нескольких первых шагах. Приведенная схема иллюстрирует тот факт, что человек может упасть вниз только через нечетное число шагов. После одного шага вероятность упасть вниз равна 1/3 (рис. 6). Путь 1 → 2 → 1 → 0 добавляет еще 2/27 к вероятности падения, давая общую вероятность несчастья 11/27. После пяти шагов пути 1 → 2 → 1 → 2 → 1 → 0 и 1 → 2 → 3 → 2 → 1 → 0 вместе добавляют 8/243 к вероятности падения, давая общий результат 107/243. Этот список можно продолжить, но мы обратимся теперь к иному подходу.
Рис. 6. Схема блуждания пьяницы, показывающая вероятность нахождения на различных расстояниях от края пропасти.
Настоящая задача о блуждании весьма популярна и имеет много формулировок. Далее мы будем трактовать ее как задачу о частице, движущейся по оси.
Рассмотрим частицу, которая сначала находится в положении x = 1 на оси. Структура задачи будет яснее, если вероятность шага направо вместо 2/3 будет равна p. Частица движется из положения 1 либо в точку x = 2 с вероятностью p, либо в точку x = 0 с вероятностью 1 − p (рис. 7). Вообще, если частица находится в положении x = n, n > 0, n — целое число, то она сдвигается либо в точку x = n + 1 с вероятностью p, либо в точку x = n − 1 с вероятностью 1 − p. Если частица попадает в положение x = 0, то там она поглощается (не делает других шагов). Нас интересует значение вероятности P₁ того, что частица поглощается в точке x = 0, если она выходит из точки x = 1. Разумеется, значение P₁ зависит от p. Кажется естественным, что если p близко к 1, то вероятность P₁ мала, а если p близко к нулю, то P₁ мало отличается от 1.
Рис. 7.
Рассмотрим ситуацию после первого шага: либо частица сдвинулась налево, попала в точку x = 0 и поглотилась там (это событие имеет вероятность 1 − p), либо сдвинулась направо в точку x = 2 (это событие происходит с вероятностью p). Пусть P₂ обозначает вероятность того, что частица поглощается в начале координат x = 0, если она выходит из точки x = 2. Тогда мы имеем
P₁ = 1 − p + p·P₂, (1)
так как 1 − p есть вероятность поглощения на первом шаге и p·P₂ — вероятность поглощения на последующих шагах.
Каждый путь, ведущий к поглощению из x = 2, можно разбить на две части:
(1) Путь, идущий из точки x = 2 и достигающий положения x = 1 в первый раз (не обязательно за один шаг) и
(2) Путь, идущий из точки x = 1 в точку x = 0 (также не обязательно за один шаг). Вероятность пути из положения x = 2 в x = 1 есть P₁ поскольку структура блуждания здесь идентична структуре первоначального блуждания (см. рис. 35.1), за исключением того, что начало координат переносится на один шаг направо. Вероятность попасть из точки x = 1 в x = 0 также равна P₁ как и в исходной задаче. Величина P₂ поэтому есть P₁², так как события A (частица идет по пути от точки x = 2 к x = 1) и B (частица движется по пути от точки x = 1 до x = 0) независимы, и P(A) = P(B) = P₁.
Мы можем переписать уравнение (1) как
P₁ = 1 − p + p·P₁², (2)
Уравнение (2) — квадратное относительно P₁ и имеет два решения:
P₁ = 1; P₁ = (1 − p)/p. (3)
В таких задачах одно или оба решения могут быть подходящими, в зависимости от значений p.
Если p = 1/2, то оба решения совпадают, и P₁ = 1. Когда p = 1, P₁ = 0, так как частица всегда движется вправо. И когда p = 0, очевидно, P₁ = 1. При p < 1/2 второе решение (3) не подходит, так как тогда (1 − p)/p > 1, а по смыслу задачи P₁ ≤ 1. Поэтому при 0 ≤ p ≤ 1/2 мы имеем P₁ = 1.
Чтобы доказать, что второе решение
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.