Против часовой стрелки. Что такое старение и как с ним бороться [заметки]
1
Medvedev Z. A. An attempt at a rational classification of theories of ageing // Biological Reviews. 1990 Aug 65 (3): 375–398.
2
Oldest person to give birth // www.guinnessworldrecords.com/world-records/oldest-person-to-give-birth.
3
Searle S. D., Mitniski A., Gahbauer E. A., Gill T. M., Rockwood K. A standard procedure for creating a frailty index // BMC Geriatrics. 2008 Sep; 8.
4
Bae T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis // Science. 2018 Feb; 359 (6375): 550–555.
5
Lodato M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons // Science. 2018 Feb; 359 (6375): 555–559.
6
Blokzijl F. et al. Tissue-specific mutation accumulation in human adult stem cells during life // Nature. 2016 Oct; 538: 260–264.
7
Федеральная служба государственной статистики. Статистический бюллетень 2007 года.
8
Международная классификация болезней 10-го пересмотра (МКБ-10). Mkb-10.com
9
Bulterijs S., Hull R., Björk V., Roy A. It is time to classify biological aging as a disease // Frontiers in genetics. 2015 Jun.
10
Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies // Philosophical transactions of the Royal Society. 1825: 513–528.
11
Makeham W. M. On the law of mortality // Journal of the Institue of Actuaries. 1867 Jul; 13 (6): 325–358.
12
Golubev A. How could the Gompertz-Makeham law evolve // Joournal of Theoretical Biology. 2009 May; 258 (1):1–17.
13
Dickinson M. E. et al. High-throughput discovery of novel developmental phenotypes // Nature. 2016 Sep; 537: 508–514.
14
Kinzina E. D., Podolskiy D. I., Dmitriev S. E., Gladyshev V. N. Patterns of aging biomarkers, mortality, and damaging mutations illuminate the beginning of aging and causes of early-life mortality // Cell Reports. 2019 Dec; 29 (13): 4276–4284.
15
Olshansky S. J. On the biodemography of aging: a review essay // Population and development review. 1998 Jun; 24 (2): 381–393.
16
Barbi E., Lagona F., Marsili M., Vaupel J. W., Wachter K. W. The plateau of human mortality: Demography of longevity pioneers // Science. 2018 Jun; 360 (6396): 1459–1461.
17
Gavrilov L. A., Gavrilova N. S. Mortality measurement at advanced ages // North American Actuarial Journal. 2012 Dec; 15 (3): 432–447.
18
Newman S. J. Errors as a primary cause of late-life mortality deceleration and plateaus // PLOS Biology. 2018 Dec 16 (12): e2006776.
19
Gavrilov L. A., Gavrilova N. S. New trend in old-age mortality: gompertzialization of mortality trajectory // Gerontology. 2019; 65 (5): 451–457.
20
Yang Y., Santos A. L., Xu L. Lotton C., Taddei F., Lindner A. B. Temporal scaling of aging as an adaptive strategy of Escherichia coli // Science Advances. 2019 May; 5 (5): eaaw2069.
21
Голубев А. Г. Проблемы обсуждения вопроса о возможности подходов к построению общей теории старения. I. Обобщенный закон Гомпертца – Мэйкхема // Успехи геронтологии. 2009; 22 (1). С. 60–74.
22
Liu X. Life equations for the senescence process // Biochemistry and Biophyscis Reports. 2015 Dec; 4: 228–233.
23
Anisimov V. N. Carcinogenesis and aging // Advances in Cancer Research. 1983; 40: 365–424.
24
Gems D. The aging-disease false dichotomy: understanding senescence as pathology // Frontiers in Genetics. 2015 Jun.
25
Müthel S. et al. The conserved histone chaperone LIN‐53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans // Aging Cell. 2019 Aug; 18 (6): e13012.
26
https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en ./
27
Roser M. Life Expectancy, 2016. Опубликовано на OurWorldInData.org. Цит. по: http://ourworldindata.org/data/population-growth-vital-statistics/life-expectancy /
28
https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en ./
29
https://www.who.int/gho/women_and_health/mortality/situation_trends_life_expectancy/en ./
30
Preston S. H. The changing relation between mortality and level of economic development // Population Studies. 1975; 29 (2): 231–248.
31
Shkolnikov V. M., Andreev E. M., Tursun-Zade R., Leon D. A. Patterns in the relationship between life expectancy and gross domestic product in Russia in 2005–15: a cross-sectional analysis // The Lancet Public Health. 2019 Apr; 4 (4): E181–E188.
32
Angel J. L. The bases of paleodemography // American Journal of Physical Anthropology. 1969 May; 30 (3): 427–437.
33
Kaplan H., Hill K., Lancaster J., Hurtado M. A. A theory of human life history evolution: Diet, intelligence, and longevity // Evolutionary Anthropology: Issues, News, and Reviews.. 2000 Aug; 9 (4): 156–185.
34
Marlowe F. The Hadza. In: Ember C. R., Ember M. (eds) Encyclopedia of Medical Anthropology. Springer, 2004.
35
Gurven M., Kaplan H. Longevity among hunters-gatherers: a cross-cultural examination // Population and Development Review. 2007 May; 33 (2): 321–365.
36
Lancaster H. O. Expectations of Life: A Study in the Demography, Statistics, and History of World Mortality. Springer Science & Business Media, 1990.
37
The Human Mortality Database, www.mortality.org.. Цит. по: https://web.archive.org/web/20160406131456/ http:/www.mortality.org ./
38
См. п. 26.
39
Oeppen J., Vaupel J. W. Broken limits to life expectancy // Science. 2002 May; 296 (5570): 1029–1031.
40
Dong X., Milholland B., Vijg J. Evidence for a limit to human lifespan // Nature. 2016 Oct; 538: 257–259.
41
Hughes B. G., Hekimi S. Many possible maximum lifespan trajectories // Nature. 2017 Jun; 546: E8–E9.
42
Zak N. Jeanne Calment: the secret of longevity // Research Gate. 2018 Dec; 10.13140/RG.2.2.29345.04964.
43
Maier H., Gampe J., Jeune B., Vaupel J. W., Robine J.-M. Supercentenarians. Springer Science & Business Media, 2010.
44
McMurray S. E., Blum J. E., Pawlik J. R. Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys // Marine Biology. 2008 Jun; 155: 159–171.
45
Jochum K. P., Wang X., Vennemann T. W., Sinha B., Müller W. E. G. Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals // Chemical Geology. 2012 Mar; 300–301: 143–151.
46
Roark E. B., Guilderson T. P., Dunbar R. B., Fallon S. J., Mucciarone D. A. Extreme longevity in proteinaceous deep-sea corals // PNAS. 2009 Mar; 106 (13): 5204–5208.
47
Butler P. G. et al. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica // Palaeogeography, Palaeoclimatology, Palaeoecology.. 2013 Mar; 373 (1): 141–151.
48
Nielsen J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus) // Science. 2016 Aug; 353 (6300): 702–704.
49
Helama S. & Valovirta I. The oldest recorded animal in Finland: ontogenetic age and growth in Margaritifera margaritifera (L. 1758) based on internal shell increments // Memoranda Soc. Fauna Flora Fennica. 2008; 84:20–30.
50
Ebert T. A. Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon // Fischery Bulletin. 2003; 101 (4): 915–922.
51
Cailliet G. M. et al. Age determination and validation studies of marine fishes: do deep-dwellers live longer? // Experimental Gerontology. 2001 Apr; 36 (4–6): 739–764.
52
Petralia R. S., Mattson M. P., Yao P. J. Aging and longevity in the simplest animals and the quest for immortality // Ageing Research Reviews. 2014 Jul; 16: 66–82.
53
George J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization // Canadian Journal of Zoology. 1999; 77 (4): 571–580.
54
Jones et al. Diversity of ageing across the tree of life // Nature. 2013 Dec; 505: 169–173.
55
Martínez D. E. Mortality Patterns Suggest Lack of Senescence in Hydra // Experimental Gerontology. 1998 Mar; 33 (3): 217–225.
56
Schaible R., Ringelhan F., Kramer B., Miethe T. Environmental challenges improve resource utilization for asexual reproduction and maintenance in hydra // Experimental Gerontology. 2011 Oct; 46 (10): 794–802.
57
Cм. п. 53.
58
Finch C. E. Longevity, senescence, and the genome. University of Chicago Press, 1994.
59
http://genomics.senescence.info/species/nonaging.php.
60
Vaupel J. W., Baudisch A., Dölling M., Roach D. A., Gampe J. The case for negative senescence // Theoretical Population Biology. 2004 Jun; 65 (4): 339–351.
61
Ebert T. A. Negative senescence in sea urchins // Experimental Gerontology. 2019 Jul; 122: 92–98.
62
Ma S., Gladyshev V. N. Molecular signatures of longevity: Insights from cross-species comparative studies // Seminars in Cell & Developmental Biology. 2017 Oct; 70: 190–203.
63
Aktipis C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity // Philosophical Transactions of the Royal Society B. 2015 Jul; 370 (1673).
64
Seluanov A., Gladyshev V. N., Vijg J., Gorbunova V. Mechanisms of cancer resistance in long-lived mammals // Nature Reviews Cancer. 2018 Apr; 18: 433–441.
65
Qusada V. et al. Giant tortoise genomes provide insights into longevity and age-related disease // Nature Ecology & Evolution. 2018 Dec; 3: 87–95.
66
Wirthin M. Parrot genomes and the evolution of heightened longevity and cognition // Current Biology. 2018 Dec; 28 (24): 4001–4008. E7.
67
De Magalhães J. P., Costa J., Church G. M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts // Journal of Gerontology: Series A. 2007; 62A (2): 149–160.
68
Flouris A. D. & Piantoni C. Links between thermoregulation and aging in endotherms and ectotherms // Temperature. 2015 Apr; 2 (1): 73–85.
69
Marra N. J. et al. White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability // PNAS. 2019 Mar; 116 (10): 4446–4455.
70
Golubev A., Hanson A. D., Gladyshev V. N. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. // Antioxidants & Redox Signaling.. 2018 Oct; 29 (10): 1003–1017.
71
Austad S. N., Fischer K. E. Mammalian Aging, Metabolism, and Ecology: Evidence From the Bats and Marsupials // Journal of Gerontology. 1991 Mar; 46 (2): B47–B53.
72
Cram D. L. et al. Rank-Related Contrasts in Longevity Arise from Extra-Group Excursions Not Delayed Senescence in a Cooperative Mammal // Current Biology. 2018 Sep; 28 (18): 2934–2949.e4.
73
Schmidt C. M., Jarvis U. M., Bennett N. C. The long-lived queen: reproduction and longevity in female eusocial Damaraland mole-rats (Fukomys damarensis) // African Zoology. 2013 Mar; 48 (1): 193–196.
74
Haddad L. S., Kelbert L., Hulbert A. J. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes // Experimental Gerontology. 2007 Jul; 42 (7): 601–609.
75
Wan D. C. et al. Honey bee Royalactin unlocks conserved pluripotency pathway in mammals // Nature Communications. 2018 Dec; 9: 5078.
76
Alexander R. D. The evolution of social behavior // Annual Reviews in Ecology, Evolution and Systematics. 1974; 5: 325–383.
77
Park T. J. et al. Selective Inflammatory Pain Insensitivity in the African Naked Mole-Rat (Heterocephalus glaber) // PLOS Biology. 2008 Jan; 6 (1): e13.
78
Larson J., Park T. J. Extreme hypoxia tolerance of naked mole-rat brain // NeuroReport. 2009 Dec; 20 (18): 1634–1637.
79
Delaney M. A. et al. Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber) // Veterinary Pathology, 2016 May; 53 (3): 691–696.
80
Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species // Journal of Comparative Physiology. 2008 Jan; 178: 439–445.
81
Finch C. E. Update on slow aging and negligible senescence – a mini-review // Gerontology. 2009; 55 (3): 307–13.
82
Sherman P. W., Jarvis J. U. M. Extraordinary life spans of naked mole‐rats (Heterocephalus glaber) // Journal of Zoology. 2006 Feb; 258 (3): 307–311.
83
Riccio A. P., Goldman B. D. Circadian rhythms of body temperature and metabolic rate in naked mole-rats // Physiology & Behaviour. 2000 Oct; 71 (1–2): 15–22.
84
Skulachev V. P. et al. Neoteny, Prolongation of Youth: From Naked Mole Rats to "Naked Apes" (Humans) // Physiological Reviews. 2017 Apr; 97 (2): 699–720.
85
Hawkes K. et al. Grandmothering, menopause, and the evolution of human life histories // PNAS. 1998 Feb; 95 (3): 1336–1339.
86
Goyal et al. Persistent metabolic youth in the aging female brain // PNAS. 2019 Feb; 116 (8): 3251–3255.
87
Shimokata H… Ando F… Niino N.. A new comprehensive study on aging – the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA) // Journal of Epidemiology.. 2000 Apr; 10 (1 Suppl): S1–9.
88
Keys A., Brožek J., Henschel A., Mickelsen O., Taylor H. L. The biology of human starvation. University of Minnesota Press, 1950.
89
Kalm L. .M., Semba R. .D. They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment. Journal of Nutrition.. 2005 Jun; 135 (6): 1347–1352.
90
Akhtar A. The Flaws and Human Harms of Animal Experimentation // Cambridge Quartely of Healthcare Ethics. 2005 Oct; 24 (4): 407–419.
91
Hackam D. G., Redelmier D. A. Translation of Research Evidence From Animals to Humans // 2006 Oct; 296 (14): 1727–1732.
92
Rangarajan A., Weinberg R. Comparative biology of mouse versus human cells: modelling human cancer in mice // Nature Reviews Cancer. 2003 Dec; 3: 952–959.
93
См. п. 63.
94
Webster S. J., Bachstetter A. D., Nelson P. T., Schmitt F. A., van Eldik L. J. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models // Frontiers in Genetics. 2004 Apr; 5: 88.
95
Bolker J. A. Animal Models in Translational Research: Rosetta Stone or Stumbling Block? // BioEssays. 2017 Oct; 39 (12): 170089.
96
https://dogagingproject.org ./
97
Urfer S. R. et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs // GeroScience. 2017 Apr; 39: 117–127.
98
Cleaver J. E. Defective Repair Replication of DNA in Xeroderma Pigmentosum // Nature. 1968 May; 218: 652–656.
99
Oshima J., Martin G. M., Hisama F. M. Werner Syndrome // Adam M. P., Ardinger H. H., Pagon R. A. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020.
100
Hasty P., Campisi J., Hoeijmakers J., van Steeg H., Vijg J. Aging and Genome Maintenance: Lessons from the Mouse? // Science. 2003 Feb; 299 (5611): 1355–1359.
101
Navarro C. L., Cau P., Lévy N. Molecular bases of progeroid syndromes // Human Molecular Genetics. 2006 Oct; 15 (sup2): R151–R161.
102
Kyng K., Croteau D. L., Bohr V. A. Werner syndrome resembles normal aging // Cell Cycle. 2009 Aug; 8 (15): 2319–2323.
103
Merideth M. A. et al. Phenotype and Course of Hutchinson – Gilford Progeria Syndrome // NEJM. 2008 Feb; 358: 592–604.
104
Hennekam R. C. M. Hutchinson – Gilford progeria syndrome: Review of the phenotype // American Journal of Medical Genetics Part A.. 2006 Jul; 140A (23): 2603–2624.
105
Goldman R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson – Gilford progeria syndrome // PNAS. 2004 Jun; 101 (14): 8963–8968.
106
Gordon B. L. et al. Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome // 2018 Apr: 319 (16): 1687–1695.
107
Clements C. S. et al. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways // Biogerontology. 2019 Arp; 20: 337–358.
108
Santiago-Fernández. O. et al. Development of a CRISPR/Cas9-based therapy for Hutchinson – Gilford progeria syndrome // Nature Medicine. 2019 Feb; 25: 423–426.
109
Beyret E. et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson – Gilford progeria syndrome // Nature Medicine. 2019 Feb; 25: 419–422.
110
Poulain et al. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study // Experimental Gerontology. 2004 Sep; 39 (9): 1423–1429.
111
Buettner D. The Blue Zones, Second Edition: 9 lessons for living longer from the people who've lived the longest. National Geographic Books, 2012.
112
Poulain M., Herm A., Pes G. The Blue Zones: areas of exceptional longevity around the world // Vienna Yearbook of Population Research. 2013; 11: 87–108.
113
Medvedev Z. A. Caucasus and Altay longevity: a biological or social problem? // The Gerontologist. 1974 Oct; 14 (5p1): 381–387.
114
Buettner D., Skemp S. Blue Zones: lessons from the world's longest lived // American Journal of Lifestyle Medicine. 2016 Mar;10 (5): 318–321.
115
Perls T. Dementia-free centenarians // Experimental Gerontology. 2004 Nov – Dec; 39 (11–12): 1587–1593.
116
Kedlian V. R., Donertas H. M., Thornton J. M. The widespread increase in inter-individual variability of gene expression in the human brain with age // Aging. 2019 Apr; 11 (8): 2253–2280.
117
Ostan R. et al. Heterogeneity of thyroid function and impact of peripheral thyroxine deiodination in centenarians and semi-supercentenarians: association with functional status and mortality // The Journals of Gerontology: Series A. 2019 Jun; 74 (6): 802–810.
118
Bunning B. J. et al. Global metabolic profiling to model biological processes of aging in twins // Aging Cell. 2019 Oct; 19: e13073.
119
Franceschi C., Ostan R., Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? // Annual Review of Nutrition. 2018 May; 38: 329–356.
120
Pignolo R. J. Exceptional human longevity // Mayo Clinic Proceedings. 2019 Jan; 94 (1): 110–124.
121
Horvath S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring // Aging. 2015 Dec; 7 (12): 1159–1170.
122
Alzheimer's association. 2018 Alzheimer's disease facts and figures // Alzheimer's & Dementia. 2018 Mar; 14 (3): 367–429.
123
Franceschi C. et al. Accelerated bio‐cognitive aging in Down syndrome: State of the art and possible deceleration strategies // Aging Cell. 2019 Feb; 18 (3): e12903.
124
Horvath S. Accelerated epigenetic aging in Down syndrome // Aging Cell. 14 (3): 491–495.
125
Armenian S. H., Gibson C. J., Rockne R. C., Ness K. K. Premature aging in young cancer survivors // Journal of the National Cancer Institute. 2019 Mar; 111 (3): 226–232.
126
Hill A., Sadda J., LaBarge M. A., Hurria A. How cancer therapeutics cause accelerated aging: Insights from the hallmarks of aging // Journal of Geriatric Oncology. 2019 Mar.
127
De Francesco D. et al. Do people living with HIV experience greater age advancement than their HIV-negative counterparts? // AIDS. 2019 Feb; 33 (2): 259–268.
128
Franceschi C. et al. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates // Frontiers in Medicine. 2018 Mar; 5: 61.
129
Hindhede M. The effect of food restriction during war on mortality in Copenhagen // JAMA. 1920 Feb; 74 (6): 381–382.
130
https://calerie.duke.edu/home.
131
Ravussin E. et al. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity // The Journals of Gerontology: Series A. 2015 Sep; 70 (9): 1097–1104.
132
Bartke A. et al. Extending the lifespan of long-lived mice // Nature. 2001 Nov; 414: 412.
133
Rose M. R. et al. Evolution of late-life mortality in Drosophila melanogaster // Evolution.. 2002 Oct; 56 (10): 1982–1991.
134
Ayyadevara S… Alla R… Thaden J. .J., Shmookler Reis R. .J. Remarkable longevity and stress resistance of nematode PI3K-null mutants // Aging Cell.. 2008 Jan; 7 (1): 13–22.
135
De Grey A. D. N. J. Resistance to debate on how to postpone ageing is delaying progress and costing lives // EMBO Reports. 2005 Jul; 6 (suppl 1): S49–S53.
136
Kaeberlein M., Galvan V. Rapamycin and Alzheimer's disease: Time for a clinical trial? // Science Translational Medicine. 2019 Jan; 11 (476): eaar4289.
137
https://www.nia.nih.gov/research/blog/2018/10/we-have-budget-fy-2019.
138
https://www.kff.org/hivaids/fact-sheet/u-s-federal-funding-for-hivaids-trends-over-time ./
139
De Grey A. D. N. J. An Engineer's Approach to the Development of Real Anti-Aging Medicine // Science of Aging Knowledge Environment. 2003 Jan; 2003 (1): vp1.
140
https://www.sens.org ./
141
De Grey A. D. N. J. Time to Talk SENS: Critiquing the Immutability of Human Aging // Annals of the New York Academy of Sciences. 2006 Jan; 959 (1): 452–462.
142
http://scienceagainstaging.com/foundation.
143
López-Otín C., Blasco M. A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging // Cell. 2013 Jun; 153 (6): 1194–1217.
144
Warner H. et al. Science fact and the SENS agenda // EMBO Reports. 2005 Nov; 6 (11): 1006–1008.
145
Demeyer D., Mertens B., De Smet S., Ulens M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review // Critical Reviews in Food Science and Nutrition. 2016 Aug; 56 (16): 2747–2766.
146
https://www.wcrf.org/dietandcancer/recommendations/limit-red-processed-meat.
147
Alshahrani S. M. et al. Red and Processed Meat and Mortality in a Low Meat Intake Population // Nutrients. 2019 Mar; 11 (3): 622.
148
Cucinotta F. A. Space Radiation Risks for Astronauts on Multiple International Space Station Missions // PLOS One. 2014 Apr; 9 (4): e96099.
149
Khrapko K., Vijg J. Mitochondrial DNA mutations and aging: devils in the details? // Trends in Genetics. 2009 Feb; 25 (2): 91–98.
150
Hiona A., Leeuwenburgh C. The role of mitochondrial DNA mutations in aging and sarcopenia: Implications for the mitochondrial vicious cycle theory of aging // Experimental Gerontology. 2008 Jan; 43 (1): 24–33.
151
Swerdlow R. H., Burns J. M., Khan S. M. The Alzheimer's disease mitochondrial cascade hypothesis // Journal of Alzheimers Disease. 2010 Jun; 20 (Suppl 2): 265–279.
152
Hämäläinen. R. H. Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias // Nature Metabolism. 2019 Oct; 1: 958–965.
153
McCulloch S. D., Kunkel T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases // Cell Research. 2008 Jan; 18 (1): 148–161.
154
Martincorena I., Campbell I. Somatic mutation in cancer and normal cells // Science. 2015 Sep; 349 (6255): 1483–1489.
155
Andriani G. A., Vijg J., Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain // Mechanisms of Ageing and Development. 2017 Jan; 161 (A): 19–36.
156
Zasadil L. M., Britigan E. M., Weaver B. A. 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells // Seminars in Cell & Developmental Biology.. 2013 Apr; 24 (4): 370–379.
157
Kaushai et al. Alteration of gene expression by chromosome loss in the postnatal mouse brain // Journal of Neuroscience. 2003 Jul; 23 (13): 5599–5606.
158
Duncan A. W. et al. Aneuploidy as a mechanism for stress-induced liver adaptation // Journal of Clinical Investigation. 2012 Sep; 122 (9): 3307–3315.
159
Hancks D. C., Kazazian H. H. Active human retrotransposons: variation and disease // Current Opinion in Genetics & Development.. 2012 Jun; 22 (3): 191–203.
160
De Koning A. P. J., Gu W., Castor T. A., Batzer M. A., Pollock D. D. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome // PLOS Genetics. 2011 Dec; 7 (12): e1002384.
161
Palazzo A. F., Gregory T. R. The case for junk DNA // PLOS Genetics. 2014 May; 10 (5): e1004351.
162
Kazazian H. H. Mobile elements: drivers of genome evolution // Science. 2004 Mar; 303 (5664): 1626–1632.
163
См. п. 15.
164
Rodić. N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers // The American Journal of Pathology.. 2014 May; 184 (5): 1280–1286.
165
De Cecco M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements // Aging Cell. 2013 Jan; 12 (2): 247–256.
166
Erwin J. A., Marchetto M. C., Gage F. H. Mobile DNA elements in the generation of diversity and complexity in the brain // Nature Reviews Neuroscience. 2014 Jul; 15: 497–506.
167
Muotri A. R., Zhao C., Marchetto M. C. N., Gage F. H. Environmental influence on L1 retrotransposons in the adult hippocampus // Hippocampus. 2009 Sep; 19 (10): 1002–1007.
168
Anisimova A. S., Alexandrov A. I., Makarova N. E., Gladyshev V. N., Dmitriev S. E. Protein synthesis and quality control in aging // Aging. 2018 Dec; 10 (12): 4269–4288.
169
Ke Z. et al. Translation fidelity coevolves with longevity // Aging Cell. 2017 Jul; 16 (5): 988–993.
170
Yin D., Chen K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions // Experimental Gerontology.. 2005 Jun; 40 (6): 455–465.
171
Hunter S. J. et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans // Diabetes. 2003 Feb; 52 (2): 492–498.
172
Li Y. M., Tan A. X., Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation – modified proteins to a conserved motif // Nature Medicine. 1995 Oct; 1: 1057–1061.
173
Nass N. Glycation of PDGF results in decreased biological activity // The International Journal of Biochemistry & Cell Biology.. 2010 May; 42 (5): 749–754.
174
Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins // Science. 1981 Jan; 211 (4481): 491–493.
175
Terman A. Garbage catastrophe theory of aging: imperfect removal of oxidative damage? // Redox Report. 2001; 6 (1): 15–26.
176
Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity // Biochimica et Biophysica Acta (BBA) – Bioenergetics.. 2008 Oct; 1777 (10): 1249–1262.
177
Stillwell W., Wassall S. R. Docosahexaenoic acid: membrane properties of a unique fatty acid // Chemistry and Physics of Lipids. 2003 Nov; 126 (1): 1–27.
178
Nakamura M. T., Nara T. Y. Structure, function and dietary regulations of Δ6, Δ5 and Δ9 desaturases // Annual Review of Nutrition. 2004 Jul; 24: 345–376.
179
Solfrizzi V. et al. Unsaturated fatty acids intake and all-causes mortality: a 8.5-year follow-up of the Italian Longitudinal Study on Aging // Experimental Gerontology.. 2005 Apr; 40 (4): 335–343.
180
Aung T. et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks // JAMA Cardiology. 2018 Mar; 3 (3): 225–233.
181
Simopoulos A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids // Biomedicine & Pharmacotherapy.. 2002 Oct; 56 (8): 365–379.
182
Haddad L. S., Kelbert L., Hulbert A. J. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes // Experimental Gerontology.. 2007 Jul; 42 (7): 601–609.
183
Johnson A. A., Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age‐related disease // Aging Cell. 2019 Sep; 18 (6): e13048.
184
Bozek K. et al. Lipidome determinants of maximal lifespan in mammals // Scientific Reports. 2017 Jan; 7: 5.
185
Gladyshev V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes // Aging Cell. 2016 Apr; 15 (4): 594–602.
186
Golubev A., Hanson A. D., Gladyshev V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes // Journal of Biological Chemistry. 2017 Apr; 292: 6029–6038.
187
Li W. & Vijg J. Measuring genome instability in aging – a mini-review // Gerontology. 2012 Feb; 58 (2): 129–138.
188
Kaushik S. & Cuervo A. M. Proteostasis and aging // Nature Medicine. 2015 Dec; 21: 1406–415.
189
Richard P. Shefferson, Owen R. Jones, Roberto Salguero-Gómez. The evolution of senescence in the tree of life. Cambridge University Press, 2017.
190
Arrojo e Drigo R. et al. Age mosaicism across multiple scales in adult tissues // Cell Metabolism. 2019 Aug; 30 (2): 343–351. E3.
191
Xu M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age // PNAS. 2015 Nov; 112 (46): E6301–E6310.
192
Waaiker M. E. C. et al. Are skin senescence and immunosenescence linked within individuals? // Aging Cell. 18 (4): e12956.
193
Ogrodnik et al. Cellular senescence drives age-dependent hepatic steatosis // Nature Communications. 2017 Jun; 8: 15691.
194
Leon O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment // Nature Medicine. 2017 Apr; 23: 775–781.
195
Ogrodnik et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis // Cell Metabolism. 2019 Jan; 29 (5): 1061–1077. E8.
196
Galluzzi et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 // Cell Death & Differentiation. 2018 Jan; 25: 486–541.
197
Smith J. R., Pereira-Smith O. M., Schneider E. L. Colony size distributions as a measure of in vivo and in vitro aging // PNAS. 1978 Mar; 75 (3): 1353–1356.
198
Gnani D. et al. An early‐senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro‐inflammatory program // Aging Cell. 2019 Mar; 18 (3): e12933.
199
Oviedo N. J., Beane S. W. Regeneration: The origin of cancer or a possible cure? // Seminars in Cell & Developmental Biology.. 2009 Jul; 20 (5): 557–564.
200
Xu M. et al. Senolytics improve physical function and increase lifespan in old age // Nature Medicine. 2018 Jul; 24: 1246–1256.
201
Cм. п. 44.
202
Zhu Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs // Aging Cell. 2015 Mar; 14 (4): 644–658.
203
Zhang R. et al. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA // Developmental Cell. 2005 Jan; 8 (1): 19–30.
204
Muñoz-Espín. D. & Serrano M. Cellular senescence: from physiology to pathology // Nature Reviews Molecular Cell Biology. 2014 Jun; 15: 482–496.
205
Tsurumi A. & Li W. Global heterochromatin loss // Epigenetics. 2012 Jul; 7 (7): 680–688.
206
Hayflick L. The limited in vitro lifetime of human diploid cell strains // Experimental Cell Research. 1965 Mar; 37 (3): 614–636.
207
Jung T., Höhn A., Grune T. Lipofuscin: detection and quantification by microscopic techniques. // Methods in Molecular Biology. 2010; 594: 173–193.
208
Pincus Z., Mazer T. C., Slack F. J. Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green // Aging. 2016 May; 8 (5): 889–898.
209
Zhao Y. et al. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence // PNAS. 2008 Feb; 115 (8): 1801–1806.
210
Cristofalo V. J. SA beta Gal staining: biomarker or delusion // Experimental Gerontology. 2005 Oct; 40 (10): 836–838.
211
Coppé J.-P. et al. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor // PLOS Biology. 2008 Dec; 6 (12): e301.
212
De Magalhães J. P. & Passos J. F. Stress, cell senescence and organismal ageing // Mechanisms of Ageing and Development. 2018 Mar; 170: 2–9.
213
См. п. 56.
214
Storer M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning // Cell. 2013 Nov; 155 (5): 1119–1130.
215
Freitas-Rodríguez. S. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond // Biochimica et Biophysica Acta (BBA) – Molecular Cell Research.. 2017 Nov; 1864 (11, part A): 2015–2025.
216
Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease // Nature Reviews Molecular Cell Biology. 2014 Nov; 15: 786–801.
217
Wilson A., Trumpp A. Bone-marrow haematopoietic-stem-cell niches // Nature Reviews Microbiology. 2006 Feb; 6: 93–106.
218
См. п. 72.
219
Cole M. A., Quan T., Voorhess J. J., Fisher G. J. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging // Journal of Cell Communication and Signaling. 2018 Feb; 12: 35–43.
220
Mavrogonatou E., Pratsinis H., Papadopoulou A., Karamanos N. K., Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis // Matrix Biology. 2019 Jan; 75–76: 27–42.
221
См. п. 71.
222
Segel M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells // Nature. 2019 Aug; 573: 130–134.
223
Choi H. R. et al. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix // Aging Cell. 2010 Nov; 10 (1): 148–157.
224
Pavlidou T. et al. Metformin Delays Satellite Cell Activation and Maintains Quiescence // Stem Cells International. 2019 Apr; 2019: 5980465.
225
Solanas G. et al. Aged stem cells reprogram their daily rhythmic functions to adapt to stress// Cell. 2017 Aug; 170 (4): 678–692. E20.
226
Ahmed A. S. I., Sheng M. H. C., Wasnik S., Baylink D. J., Lau K.-H. W. Effect on aging on stem cells // World Journal of Experimental Medicine. 2017 Feb; 7 (1): 1–10.
227
Martín‐Suárez. S., Valero J., Muro‐García. T., Encinas J. M. Phenotypical and functional heterogeneity of neural stem cells in the aged hippocampus // Aging Cell. 2019 Apr; 18 (4): e12958.
228
Udroiu I. & Sgura A. Rates of erythropoiesis in mammals and their relationship with lifespan and hematopoietic stem cells aging // Biogerontology. 2019 Mar; 20: 445–456.
229
Nicaise A. M. et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis // PNAS. 2019 Apr; 116 (18): 9030–9039.
230
Lewis-McDougall F. et al. Aged‐senescent cells contribute to impaired heart regeneration // Aging Cell. 2019 Mar; 18 (3): e12931.
231
Penzo-Méndez A. I., Chen Y.-J., Li J., Witze E. S., Stanger B. Z. Spontaneous cell competition in immortalized mammalian cell lines // PLOS One. 2015 Jul; 10 (7): e0132437.
232
Morata G. & Ripoll P. Minutes: Mutants of Drosophila autonomously affecting cell division rate // Developmental Biology. 1975 Feb; 42 (2): 211–221.
233
Rhiner C. et al. Flower Forms an Extracellular Code that Reveals the Fitness of a Cell to its Neighbors in Drosophila // Developmental Cell. 2010 Jun; 18 (6): 985–998.
234
Merino M. M., Levayer R., Moreno E. Survival of the Fittest: Essential Roles of Cell Competition in Development, Aging, and Cancer // Trends in Cell Biology. 2016 Oct; 26 (10): 776–788.
235
Bowling S. et al. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development // Nature Communications. 2018 May; 9: 1763.
236
Levayer R., Dupont C., Moreno E. Tissue crowding induces caspase-dependent competition for space // Current Biology. 2016 Mar; 26 (5): 670–677.
237
Coelho D. S. et al. Culling less fit neurons protects against amyloid-β-induced brain damage and cognitive and motor decline // Cell Reports. 2018 Dec; 25 (13): 3661–3673.e3.
238
Liu N. et al. Stem cell competition orchestrates skin homeostasis and ageing // Nature. 2019 Apr; 568: 344–350.
239
Ellis S. J. et al. Distinct modes of cell competition shape mammalian tissue morphogenesis // Nature. 2019 May; 569: 497–502.
240
Adams P. D., Jasper H., Rudolph K. L. Aging-induced stem cell mutations as drivers for disease and cancer // Cell Stem Cell. 2015 Jun; 16 (6): 601–612.
241
Wagstaff L. et al. Mechanical cell competition kills cells via induction of lethal p53 levels // Nature Communications. 2016 Apr; 7: 11373.
242
Palmer A. K. & Kirkland J. L. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine // Experimental Gerontology. 2016 Dec; 86: 97–105.
243
Sasaki A. et al. Obesity suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues // Cell Reports. 2018 Apr; 23 (4): 974–982.
244
Ambrosi T. H. et al. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration // Cell Stem Cell. 2017 Jun; 20 (6): 771–784.e6.
245
См. п. 51.
246
Collado M. C. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid // Scientific Reports. 2016 Mar; 6: 23129.
247
Santoro A. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians // Cellular and Molecular Life Sciences. 2017 Oct; 75:129–148.
248
Suzuki T. A. & Worobey M. Geographical variation of human gut microbial composition // Biology Letters. 2014 Feb; 10 (2): 20131037.
249
He Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models // Nature Medicine. 2018 Aug; 24: 1532–1535.
250
Schnorr S. L. et al. Gut microbiome of the Hadza hunter-gatherers // Nature Communications. 2014 Apr; 5: 3654.
251
David L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome // Nature. 2013 Dec; 505: 559–563.
252
См. п. 103.
253
Brito I. L. et al. Transmission of human-associated microbiota along family and social networks // Nature Microbiology. 2019 Mar; 4: 964–971.
254
См. п. 103.
255
Vaisserman A. M., Koliada A. K., Marotta F. Gut microbiota: A player in aging and a target for anti-aging intervention // Ageing Research Reviews. 2017 May; 35: 26–45.
256
O'Toole P. W. & Jeffery I. B. Gut microbiota and aging // Science. 2015 Dec; 350 (6265): 1214–1215.
257
Biagi E. et al. Gut microbiota and extreme longevity // Current Biology. 2016 Jun; 26 (11): 1480–1485.
258
Biagi E. et al. The aging gut microbiota: new perspectives // Ageing Research Reviews. 2011 Sep; 10 (4): 428–429.
259
Kundu P., Blacher E., Elinav E., Pettersson S. Our gut microbiome: the evolving inner self // Cell. 2017 Dec; 171 (7): 1481–1493.
260
Strachan D. O. Hay fever, hygiene, and household size // BMJ. 1989 Nov; 299 (6710): 1259–1260.
261
Fleming J. O. Helminth therapy and multiple sclerosis // International Journal for Parasitology. 2013 Mar; 43 (3–4): 259–274.
262
Kondrashova A., Seiskari T., Ilonen J., Knip M., Hyöty H. The 'Hygiene hypothesis' and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland // APMIS. 2012 Nov; 121 (6): 478–493.
263
См. п. 111.
264
Alcock J., Maley C. C., Aktipis C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms // BioEssays. 2014 Aug; 36 (10): 940–949.
265
Selking J., Wong P., Zhang X., Pettersson S. Metabolic tinkering by the gut microbiome // Gut Microbes. 2014 May; 5 (3): 369–380.
266
Cai D. et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians // Nutrients. 2016 Sep; 8 (9): 564.
267
Kundu P. et al. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice // Science Translational Medicine. 2019 Nov; 11 (518): eaau4760.
268
См. п. 120.
269
См. п. 113.
270
См. п. 112.
271
Marlowe F. W. & Berbesque J. C. Tubers as fallback foods and their impact on Hadza hunter‐gatherers // American Journal of Physical Anthropology.. 2009 Apr; 140 (4): 751–758.
272
Marlowe F. The Hadza // Encyclopedia of Medical Anthropology, 2004 Edition.
273
Raichlen D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter‐gatherers // American Journal of Human Biology. 2016 Oct; 29: e22919.
274
См. п. 103.
275
Stebegg M. et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice // Nature Communications. 2019 Jun; 10: 2443.
276
Bárcena. C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice // Nature Medicine. 2019 Jul; 25: 1234–1242.
277
См. п. 123.
278
Franceschi C. & Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases // The Journals of Gerontology: Series A. 2014 Jun; 69 (suppl 1): S4–S9.
279
Franceschi C., Garagnani P., Vitale G., Capri M., Salvioli S. Inflammaging and "garb-aging" // Trends in Endocrinology & Museum. 2017 Mar; 28 (3): 199–212.
280
Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: a new immune – metabolic viewpoint for age-related diseases // Nature Reviews Endocrinology. 2018 Jul; 14: 576–590.
281
См. п. 134.
282
Franceschi C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence // Annals of the New York Academy of Sciences. 2006 Jan; 908 (1): 244–254.
283
Salminen A. et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging // Ageing Research Reviews. 2008 Apr; 7 (2): 83–105.
284
См. п. 139.
285
Pinti M. et al. Aging of the immune system: Focus on inflammation and vaccination // European Journal of Immunology. 2016 Sep; 46 (10): 2286–2301.
286
Johnson N. D. & Conneely K. N. The role of DNA methylation and hydroxymethylation in immunosenescence // Ageing Research Reviews. 2019 May; 51: 11–23.
287
Franceschi C. et al. Inflammaging 2018: An update and a model // Seminars in Immunology. 2018 Dec; 40: 1–5.
288
Lachmann R. et al. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany // PLOS One. 2018 Jul; 13 (7): e0200267.
289
Avivi I. et al. Depletion of B cells rejuvenates the peripheral B‐cell compartment but is insufficient to restore immune competence in aging // Aging Cell. 2019 May; 18 (4): e12959.
290
См. п. 134.
291
См. п. 143.
292
Franceschi C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans // Mechanisms of Ageing and Development. 2007 Jan; 128 (1): 92–105.
293
См. п. 136.
294
Ouchi N., Parker J. L., Lugus J. J., Walsh K. Adipokines in inflammation and metabolic disease // Nature Reviews Immunology. 2011 Jan; 11: 85–97.
295
См. п. 141.
296
Ostan R. et al. Inflammaging and cancer: a challenge for the Mediterranean diet // Nutrients. 2015 Apr; 7 (4): 2589–2621.
297
Calcer P. C. et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition // Ageing Research Reviews. 2017 Nov; 40: 95–119.
298
Yiallouris A. et al. Adrenal aging and its implications on stress responsiveness in human // Frontiers in Endocrinology, 2019 Feb; 10: 54.
299
Zhang G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-kB and GnRH // Nature. 2013 May; 497: 211–216.
300
Galkin F., Zhang B., Dmitriev S. E., Gladyshev V. N. Reversibility of irreversible aging // Ageing Research Reviews. 2019 Jan; 49: 104–114.
301
Mechanisms in endocrinology: Aging and anti-aging: a Combo-Endocrinology overview // European Journal of Endocrinology. 2017 Jun; 176 (6): R283–R308.
302
Franceschi C. et al. Do men and women follow different trajectories to reach extreme longevity? // Aging Clinical and Experimental Research. 2000; 12: 77–84.
303
Almeida M. Aging mechanisms in bone // BoneKEy Reports. 2012 Jul; 1 (7): 102.
304
Vitale G., Cesari M., Mari D. Aging of the endocrine system and its potential impact on sarcopenia // European Journal of Internal Medicine. 2016 Nov; 35: 10–15.
305
Buford T. W. & Willoughby D. S. Impact of DHEA (S) and cortisol on immune function in aging: a brief review // Applied Physiology, Nutrition, and Metabolism. 2008 Apr; 33 (3): 429–433.
306
Lai J. C. L. & Lee D. Y. H. Network cultivation, diurnal cortisol and biological ageing: The rejuvenation hypothesis // Medical Hypotheses. 2019 Jan; 122: 1–4.
307
См. п. 154.
308
Yakar S. et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1 – deficient mice // Journal of Clinical Investigations. 2004 Jan; 113 (1): 96–105.
309
См. п. 157.
310
Liu H.-H. & Li J.-J. Aging and dyslipidemia: a review of potential mechanisms // Ageing Research Reviews. 2015 Jan; 19: 43–52.
311
Rudman D. et al. Effects of human growth hormone in men over 60 years old // NEJM.. 1990 Jul; 323 (1): 1–6.
312
Liu H. et al. Systematic review: the safety and efficacy of growth hormone in the healthy elderly // Annals of Internal Medicine. 2007 Jan; 146 (2): 104–115.
313
Bartke A. Growth hormone and aging: A challenging controversy // Clinical Interventions in Aging.. 2008 Dec; 3 (4): 659–665.
314
Horstman A. M., Dillon E. L., Urban R. J., Sheffield-More M. The role on androgens and estrogens on healthy aging and longevity // The Journals of Gerontology: Series A. 2012 Nov; 67 (11): 1140–1152.
315
Miller W. L. & Auchus R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders // Endocrinology Reviews. 2011 Feb; 32 (1): 81–151.
316
См. п. 82.
317
De Arellano M. L. B. et al. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense // Aging. 2019 Apr; 11 (7): 1918–1933.
318
Kozminski M. A. & Bloom D. A. A brief history of rejuvenation operations // The Journal of Urology. 2012 Mar; 187 (3): 1130–1134.
319
Stambler A. The unexpected outcomes of anti-aging rejuvenation, and life extensions studies: an origin of modern therapies // Rejuvenation Research. 2014 Jun; 17 (3): 297–305.
320
См. п. 157.
321
Stanworth R. D. & Jones T. H. Testosterone for the aging male; current evidence and recommended practice // Clinical Interventions in Aging. 2008 Mar; 3 (1): 25–44.
322
Basaria S. et al. Adverse events associated with testosterone administration // NEJM. 2010 Jul; 363: 109–122.
323
Jayasena C. N., Alkaabi F. M., Liebers C. S., Handley T., Franks S., Dhillo W. S. A systematic review of randomized controlled trials investigating the efficacy and safety of testosterone therapy for female sexual dysfunction in postmenopausal women // Clinical Endocrinology. 2018 Nov; 90 (3): 391–414.
324
Garratt M. et al. 17‐α estradiol ameliorates age‐associated sarcopenia and improves late‐life physical function in male mice but not in females or castrated males // Aging Cell. 2019 Feb; 18 (2): e12920.
325
Conese M., Carbone A., Beccia E., Angiolillo A. The Fountain of youth: a tale of parabiosis, stem cells, and rejuvenation // Open Medicine. 2017 Jul; 12 (1): 376.
326
Conboy M. J., Conboy I. M., Rando T. A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity // Aging Cell. 2013 Mar; 12 (3): 525–530.
327
Wright D. E. et al. Physiological migration of hematopoietic stem and progenitor cells // Science. 2001 Nov; 294 (5548): 1933–1936.
328
Balsam L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium // Nature. 2004 Mar; 428: 668–673.
329
Eggan K., Jurga S., Gosden R., Min I. M., Wagers A. J. Ovulated oocytes in adult mice derive from non-circulating germ cells // Nature. 2006 Jun; 441: 1109–1114.
330
Salpeter S. J., Khalaileh A., Weinberg-Corem N., Ziv O., Glaser B., Dor Y. Systemic Regulation of the Age-Related Decline of Pancreatic β-Cell Replication // Diabetes. 2013 Aug; 62 (8): 2843–2848.
331
Añón-Hidalgo J. et al. Circulating GDF11 levels are decreased with age but are unchanged with obesity and type 2 diabetes // Aging. 2019 Mar; 11 (6): 1733–1744.
332
Sinha M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle // Science. 2014 May; 344 (6184): 649–652.
333
Brack A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis // Science. 2007 Aug; 317 (5839): 807–810.
334
Loffredo F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy // Cell. 2013 May; 153 (4): 828–839.
335
Katsimpardi L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors // Science. 2014 May; 344 (6184): 630–634.
336
Egerman M. A. et al. GDF11 increases with age and inhibits skeletal muscle regeneration // Cell Metabolism. 2015 Jul; 22 (1): 164–174.
337
Elabd C. et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration // Nature Communications. 2014 Jun; 5: 4082.
338
Castellano J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice // Nature. 2017 Apr; 544: 488–492.
339
Villeda S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice // Nature Medicine. 2014 May; 20: 659–663.
340
Baht G. S. et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin // Nature Communications. 2015 May; 6: 7131.
341
Ghosh A. K., O'Brien M., Mau T., Qi N., Yung R. Adipose tissue senescence and inflammation in aging is reversed by the young milieu // The Journals of Gerontology: Series A. 2019 Nov; 74 (11): 1709–1715.
342
Liu A. et al. Young plasma reverses age‐dependent alterations in hepatic function through the restoration of autophagy // Aging Cell. 2017 Dec; 17 (1): e12708.
343
Rebo J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood // Nature Communications. 2016 Nov; 7: 13363.
344
См. п. 156.
345
См. п. 195.
346
См. п. 199.
347
Sha S. J. et al. Safety, Tolerability, and Feasibility of Young Plasma Infusion in the Plasma for Alzheimer Symptom Amelioration Study // JAMA Neurology. 2019 Jan; 76 (1): 35–40.
348
https://www.alkahest.com/alkahest-announces-positive-top-line-data-from-phase-2-study-in-mild-to-moderate-alzheimers-disease ./
349
Edgren G. et al. Association of donor age and sex with survival of patients receiving transfusions // JAMA Internal Medicine. 2017 Jun; 177 (6): 854–860.
350
Khoury R. & Ghossoub E. Young blood products: emerging treatment for Alzheimer's disease? // Neural Regeneration Research. 2018 Apr; 13 (4): 624–627.
351
Berzlanovich A. M. et al. Do centenarians die healthy? An autopsy study // The Journals of Gerontology: Series A. 2005 Jul; 60 (7): 862–865.
352
Kennedy et al. Geroscience: linking aging to chronic disease // Cell. 2014 Nov; 159 (4): 709–713.
353
Гаврилова С. И. Фармакотерапия болезни Альцгеймера: миф или реальность? // Болезнь Альцгеймера и старение: от нейробиологии к терапии: материалы Второй Российской конференции (Москва, 18–20 октября 1999 г). – М.: Пульс, 1999.
354
Alzheimer's association. 2018 Alzheimer's disease facts and figures // Alzheimer's & Dementia. 2018 Mar; 14 (3): 367–429.
355
Hayashi K. et al. Continuous intracerebroventricular injection of Porphyromonas gingivalis lipopolysaccharide induces systemic organ dysfunction in a mouse model of Alzheimer's disease // Experimental Gerontology. 2019 Jun; 120: 1–5.
356
Spencer P. S., Kisby G. E., Ludolph A. C. Slow toxins, biologic markers, and long‐latency neurodegenerative disease in the western Pacific region // Neurology. 1991 May; 41 (5 Suppl 2): 62–66.
357
Background Paper 6.11 Alzheimer Disease and other Dementias. https://www.who.int/medicines/areas/priority_medicines/BP6_11Alzheimer.pdf.
358
https://www.who.int/news-room/fact-sheets/detail/dementia.
359
An Y. A. & Scherer P. E. Targeting the amyloid precursor protein (APP) to mitochondria of white adipose tissues triggers mitochondrial dysfunction and obesity // Diabetes. 2018 Jul; 67 (Suppl 1).
360
Grimm M. O. W., Mett J., Grimm H. S., Hartmann T. APP function and lipids: a bidirectional link // Frontiers in Molecular Neuroscience. 2017 Mar; 10: 63.
361
Tyan S.-H. et al. Amyloid precursor protein (APP) regulates synaptic structure and function // Molecular and Cellular Neuroscience. 2012 Aug; 51 (1–2): 43–52.
362
Galvão F., Grokoski K. C., da Silva B. B., Lamers M. L., Siqueira I. R. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer // Ageing Research Reviews. 2019 Jan; 49: 83–91.
363
Nussbaum J. M., Seward M. E., Bloom G. S. Alzheimer disease. A tale of two prions // Prion. 2013 Jan; 7 (1): 14–19.
364
Clavaguera F., Hench J., Goedert M., Tolnay M. Invited review: Prion‐like transmission and spreading of tau pathology // Neuropathology and Applied Neurobiology. 2014 Nov; 41 (1): 47–58.
365
Purro S. A. et al. Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone // Nature. 2018 Dec; 564: 415–419.
366
Jaunmuktane Z. et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy // Nature. 2015 Sep; 525: 247–250.
367
См. п. 220.
368
Zeng Q. et al. Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine // Experimental Gerontology. 2019 May; 119: 100–110.
369
См. п. 210.
370
Mayeux R. et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease // NEJM. 1998 Feb; 338: 506–511.
371
См. п. 218.
372
Zou K., Gong J.-S., Yanagisawa K., Michikawa M. A Novel Function of Monomeric Amyloid β-Protein Serving as an Antioxidant Molecule against Metal-Induced Oxidative Damage // The Journal of Neuroscience. 2002 Jun; 22 (12): 4833–4841.
373
Tamagno E. et al. Oxidative stress increases expression and activity of BACE in NT>2 neurons // Neurobiology of Disease. 2002 Aug; 10 (3): 279–288.
374
Dominy S. S. et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors // Science Advances. 2019 Jan; 5 (1): eaau3333.
375
Ezzat K. et al. The viral protein corona directs viral pathogenesis and amyloid aggregation // Nature Communications. 2019 May; 10: 2331.
376
Griffen A. L. et al. Prevalence of Porphyromonas gingivalis and periodontal health status // Journal of Clinical Microbiology. 1998 Nov; 36 (11): 3239–3242.
377
Human Herpesviruses. Cambridge University Press, 2007.
378
Бредесен Д. Нестареющий мозг. – М.: Эксмо, 2019.
379
Bredesen D. E. et al. Reversal of cognitive decline: 100 patients // Journal of Alzheimer's disease & Parkinsonism. 2018; 8: 5.
380
См. п. 93.
381
Livshits G. & Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis // Ageing Research Reviews. 2019 Dec; 56: 100980.
382
Melzer D. et al. The Age UK almanac of disease profiles in later life. Ageing Research Group, University of Exceter, 2015.
383
Dengler-Crish C. M. & Elefteriou F. Shared mechanisms: osteoporosis and Alzheimer's disease? // Aging. 2019 Feb; 11 (5): 1317–1318.
384
Belikov A. V. Age-related diseases as vicious cycles // Ageing Research Reviews. 2019 Jan; 49: 11–26.
385
Franceschi C. et al. Immunosenescence in humans: deterioration or remodelling? // International Reviews of Immunology. 1995; 12 (1): 57–74.
386
Levine M. E. Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age? // The Journals of Gerontology: Series. 2013 Jun; 68 (6): 667–674.
387
Jylhävä J., Pedersen N. L., Hägg S. Biological age predictors // EBioMedicine. 2017 Jul; 21: 29–36.
388
Fried L. P. et al. Frailty in older adults: evidence for a phenotype // The Journals of Gerontology: Series A. 2001 Mar; 56 (3): M146–M157.
389
Jazwinski S. M. & Kim S. Metabolic and genetic markers of biological age // Frontiers in Genetics. 2017 May; 8: 64.
390
Williams D. M., Jylhävä J., Pedersen N. L., Hägg S. A frailty index for UK Biobank participants // The Journals of Gerontology: Series A. 2019 Apr; 74 (4): 582–587.
391
Mitniski A. et al. Age-related frailty and its association with biological markers of ageing // BMC Medicine. 2015 Jul; 13: 161.
392
Jylhävä J., Jiang M., Foebel A. D., Pedersen N. L., Hägg S. Can markers of biological age predict dependency in old age? // Biogerontology. 2019 Jan; 20: 321–329.
393
Belsky D. W. et al. Quantification of biological aging in young adults // PNAS. 2015 Jul; 112 (30): E4104–E4110.
394
Bobrov E. et al. PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging // Aging. 2018 Nov; 10 (11): 3249–3259.
395
Mamoshina P. et al. Population specific biomarkers of human aging: a big data study using south korean, canadian, and eastern european patient populations // The Journals of Gerontology: Series A. 2018 Nov; 73 (11): 1482–1490.
396
Galkin F. et al. Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects // bioRxiv. 2018 Dec.
397
Lai T.-P., Wright W. E., Shay J. W. Comparison of telomere length measurement methods // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 20160451.
398
См. п. 242.
399
Alder J. K. et al. Diagnostic utility of telomere length testing in a hospital-based setting // PNAS. 2018 Mar; 115 (10): E2358–E2365.
400
Mather K. A., Jorm A. F., Parslow R. A., Christensen H. Is telomere length a biomarker of aging? A review // The Journals of Gerontology: Series A. 2011 Feb; 66A (2): 202–213.
401
Lakota K. et al. Short lymphocyte, but not granulocyte, telomere length in a subset of patients with systemic sclerosis // Annals of the Rheumatic Diseases. 2019 Jan; 78: 1142–1144.
402
Aviv A. & Shay J. W. Reflections on telomere dynamics and ageing-related diseases in humans // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 20160436.
403
Eisenberg D. T. A. & Kuzawa C. W. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspective // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 20160442.
404
Müezzinler A., Zaineddin A. K., Brenner H. A systematic review of leukocyte telomere length and age in adults // Ageing Research Reviews. 2013 Mar; 12 (2): 509–519.
405
Frenck R. W., Blackburn E. H., Shannon K. M. The rate of telomere sequence loss in human leukocytes varies with age // PNAS. 1998 May; 95 (10): 5607–5610.
406
Dugdale H. L. & Richardson D. S. Heritability of telomere variation: it is all about the environment! // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 2016.0450.
407
Bateson M. & Nettle D. The telomere lengthening conundrum – it could be biology // Aging Cell. 2016 Dec; 16 (2): 312–319.
408
Blackburn E. H., Espel E. S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection // Science. 2015 Dec; 350 (6265): 1193–1198.
409
Garrett-Bakelman F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight // Science. 2019 Apr; 364 (6436): eaau8650.
410
Horvath S. & Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing // Nature Reviews Genetics. 2018 Apr; 19: 371–384.
411
Horvath S. DNA methylation age of human tissues and cell types // Genome Biology. 2013 Dec; 14: 3156.
412
Chen B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death // Aging. 2016 Sep; 8 (9): 1844–1865.
413
Hannum G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates // Molecular Cell. 2013 Jan; 49 (2): 359–367.
414
См. п. 242.
415
Wi X. et al. DNA methylation profile is a quantitative measure of biological aging in children // Aging. 2019 Nov; 11 (22): 10031–10051.
416
Lu A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan // Aging. 2019 Jan; 11 (2): 303–327.
417
Levine M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan // Aging. 2018 Apr; 10 (4): 573–591.
418
Teo Y. V. et al. Cell‐free DNA as a biomarker of aging // Aging Cell. 2018 Dec; 18 (1): e12890.
419
Miura Y. & Endo T. Glycomics and glycoproteomics focused on aging and age-related diseases – Glycans as a potential biomarker for physiological alterations // Biochimica et Biophysica Acta (BBA) – General Subjects. 2016 Aug; 1860 (8): 1608–1614.
420
Cole J. H. et al. Brain age predicts mortality // Molecular Psychiatry. 2017 Apr; 23: 1385–1392.
421
Goyal M. S. et al. Persistent metabolic youth in the aging female brain // PNAS. 2019 Feb; 116 (8): 3251–3255.
422
См. п. 242.
423
Kim S., Myers L., Wyckoff J., Cherry K. E., Jazwinski S. M. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age // GeroScience. 2017 Jan; 39: 83–92.
424
Belsky D. W. et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? // American Journal of Epidemiology. 2018 Jun; 187 (6): 1220–1230.
425
Søraas A. et al. Epigenetic age is a cell‐intrinsic property in transplanted human hematopoietic cells // Aging Cell. 2019 Feb; 18 (2): e12897.
426
Stölzel F. et al. Dynamics of epigenetic age following hematopoietic stem cell transplantation // Haematologica. 2017 Aug; 102: e321–e323.
427
Rietman M. L. et al. Antioxidants linked with physical, cognitive and psychological frailty: Analysis of candidate biomarkers and markers derived from the MARK-AGE study // Mechanisms of Ageing and Development. 2019 Jan; 177: 135–143.
428
См. п. 265.
429
См. п. 279.
430
Harman D. Aging: a theory based on free radical and radiation chemistry. University of California, 1955.
431
Kirkwood T. B. L. & Kowald A. The free‐radical theory of ageing – older, wiser and still alive // BioEssays. 2012 May; 34 (8): 692–700.
432
Kitazoe Y., Kishino H., Tanisawa K., Udaka K., Tanaka M. Renormalized basal metabolic rate describes the human aging process and longevity // Aging Cell. 2019 Jun; 18 (4): e12968.
433
Golden T. R., Hinerfeld D. A., Melov S. Oxidative stress and aging: beyond correlation // Aging Cell. 2002 Nov; 1 (2): 117–123.
434
Stadtman E. R. Protein oxidation and aging // Science. 1992 Aug; 257 (5074): 1220–1224.
435
Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review // Journal of Thermal Biology. 2019 Jan; 79: 166–189.
436
Sogame Y. & Kikawada T. Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki // Current Opinion in Insect Science. 2017 Feb; 19: 16–21.
437
Rao T. R. Anhydrobiosis // Resonance. 2018 May; 545–553.
438
Golubev A., Hanson A. D., Gladyshev V. N. Non-enzymatic molecular damage as a prototypic driver of aging // Journal of Biological Chemistry. 2017 Aug; 292: 6029–6038.
439
Ян Хин-шун. Дао де цзин // Древнекитайская философия: В 2 т. – М.: Мысль, 1972. – Т. 2.
440
Golubev A., Hanson A. D., Gladyshev V. N. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. // Antioxidants & Redox Signaling.. 2018 Oct; 29 (10): 1003–1017.
441
Majmundar A. J., Wong W. J., Simon M. C. Hypoxia-inducible factors and the response to hypoxic stress // Molecular Cell. 2010 Oct; 40 (2): 294–309.
442
Poillet-Perez L., Despouy G., Delage-Mourroux R., Boyer Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy // Redox Biology. 2015 Apr; 4: 184–192.
443
Wong M. Y., DiChiara A. S., Suen P. H., Chen K., Doan N. D., Shoulders M. D. Adapting secretory proteostasis and function through the unfolded protein response // Current Topics in Microbiology and Immunology. 2018; 414: 1–25.
444
Demirovic D. & Rattan S. I. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis // Experimental Gerontology. 2013 Jan; 48 (1): 94–98.
445
Gilman S. E. et al. Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood // PNAS. 2017 Jun; 114 (26): 6728–6733.
446
Veenhoven R. Healthy happiness: effects of happiness on physical health and the consequences for preventive health care // Journal of Happiness Studies. 2008; 9: 449–469.
447
Lee L. O. et al. Optimism is associated with exceptional longevity in 2 epidemiologic cohorts of men and women // PNAS. 2019 Sep; 116 (37): 18357–18362.
448
Lawrence E. M., Rogers R. G., Wadsworth T. Happiness and longevity in the United States // Social Science & Medicine. 2015 Nov; 145: 115–119.
449
Wang L. et al. Regional aging and longevity characteristics in China // Archives of Gerontology and Geriatrics. 2016 Dec; 67: 153–159.
450
См. п. 17.
451
Stewart S. & Thompson D. R. Does comedy kill? A retrospective, longitudinal cohort, nested case – control study of humour and longevity in 53 British comedians // International Journal of Cardiology. 2015 Feb; 180: 258–261.
452
Pearl R. The rate of living. University of London press, 1928.
453
Sohal R. S. The rate of living theory: a contemporary interpretation // Collatz K. G., Sohal R. S. (eds) Insect Aging. Springer, Berlin, Heidelberg, 1986.
454
См. п. 11.
455
Liu X. Life equations for the senescence process // Biochemistry and Biophyscis Reports. 2015 Dec; 4: 228–233.
456
Flouris A. D. & Piantoni C. Links between thermoregulation and aging in endotherms and ectotherms // Temperature. 2015 Apr; 2 (1): 73–85.
457
Carrillo A. E. & Flouris A. D. Caloric restriction and longevity: effects of reduced body temperature // Ageing Research Reviews. 2011 Jan; 10 (1): 153–162.
458
Gavrilov L. A. & Gavrilova N. S. Season of birth and exceptional longevity: comparative study of American centenarians, their siblings, and spouses // Journal of Aging Research. 2011 Nov; 2011: 104616.
459
Austad S. N., Fischer K. E. Mammalian Aging, Metabolism, and Ecology: Evidence From the Bats and Marsupials // Journal of Gerontology. 1991 Mar; 46 (2): B47–B53.
460
Foley N. M. et al. Growing old, yet staying young: The role of telomeres in bats' exceptional longevity // Science Advances. 2018 Feb; 4 (2): eaao0926.
461
Fleischer T., Gampe J., Scheuerlein A., Kerth G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence // Scientific Reports. 2017 Aug; 7: 7370.
462
O'Shea T. J. et al. Bat flight and zoonotic viruses // Emerging Infectious Diseases. 2014; 20 (5): 741–745.
463
Zhang G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity // Science. 2013 Jan; 339 (6118): 456–460.
464
Huang Z., Jebb D., Teeling E. C. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis // BMC Genomics. 2016 Nov; 17: 906.
465
Seluanov A., Gladyshev V. N., Vijg J., Gorbunova V. Mechanisms of cancer resistance in long-lived mammals // Nature Reviews Cancer. 2018 Apr; 18: 433–441.
466
Kacprzyk J. et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance // Acta Chiropterologica. 2017 Dec; 19 (2): 219–228.
467
Schountz T., Baker M. L., Butler J., Munster V. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans // Frontiers in Immunology. 2017 Sep; 8: 1098.
468
См. п. 34.
469
Xie J. et al. Dampened STING-dependent interferon activation in bats // Cell Host & Microbe. 2018 Mar; 23 (3): 297–301.e4.
470
Yen K., Mastitis J., Mobbs C. Lifespan is not determined by metabolic rate: evidence from fishes and C. elegans // Exp Gerontol. 2004 Jun; 39 (6): 947–949.
471
De Magalhães J. P., Costa J., Church G. M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts // Journal of Gerontology: Series A. 2007; 62A (2): 149–160.
472
Andziak B. et al. High oxidative damage levels in the longest‐living rodent, the naked mole‐rat // Aging Cell. 2006 Oct; 5 (6): 463–471.
473
Kitazoe Y., Kishino H. Tanisawa K., Udaka K., Tanaka M. Renormalized basal metabolic rate describes the human aging process and longevity // Aging Cell. 2019 Jun; 18 (4): e12968.
474
Munro D. & Parmenter M. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities // Aging Cell. 2019 Jul; 18 (5): e13009.
475
См. п. 42.
476
Gribble K. E., Moran B. M., Jones S., Corey E. L., Welch D. B. M. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature // Experimental Gerontology. 2018 Dec; 144: 99–106.
477
Munro D., Baldy C., Parmenter M., Treberg J. R. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses // Aging Cell. 2019 Feb; 18 (3): e12916.
478
Anisimova A. S., Alexandrov A. I., Makarova N. E., Gladyshev V. N., Dmitriev S. E. Protein synthesis and quality control in aging // Aging. 2018 Dec; 10 (12): 4269–4288.
479
Pérez V. et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat // PNAS. 2009 Mar; 106 (9): 3059–3064.
480
Sadowska-Bartosz I. & Bartosz G. Effect of Antioxidants Supplementation on Aging and Longevity // BioMed Research International. 2014 Mar; 2014: 404680.
481
Tsakiri E. N. et al. Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation // Aging Cell. 2018 Dec; 18 (1): e12845.
482
Cohen A. A., de Magalhães J. P., Gohil K. Ecological, biomedical and epidemiological approaches to understanding oxidative balance and ageing: what they can teach each other // Functional Ecology. 2010; 24: 997–1006.
483
Brzhevskiy V. V. et al. Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of visomitin eye drops in patients with dry eye syndrome // Advances in Therapy. 2015 Dec; 32 (12): 1263–1279.
484
Anisimov V. N. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence // Biochemistry (Moscow). 2008; 73 (12): 1329/1655.
485
Ristow M. & Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS) // Dose Response. 2014 May; 12 (2): 288–341.
486
Bjelakovic G., Nikolova D., Gluud L. L., Simonetti R. G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis // JAMA. 2007 Feb; 297 (8): 842–857.
487
См. п. 53.
488
Vaisserman A. M., Lushchak O. V., Koliada A. V. Anti-aging pharmacology: Promises and pitfalls // Ageing Research Reviews. 2016 Nov; 31: 9–35.
489
Holmström K. M. & Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling // Nature Reviews Molecular Cell Biology, 2014 May; 15: 42.
490
Dröge W. Oxidative stress and aging. In: Roach R. C., Wagner P. D., Hackett P. H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, 2003.
491
См. п. 52.
492
См. п. 15.
493
De Magalhães J. P. & Passos J. F. Stress, cell senescence and organismal ageing // Mechanisms of Ageing and Development. 2018 Mar; 170: 2–9.
494
Hine C., Zhu Y., Hollenberg A. N., Mitchell J. R. Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity // Antioxidants & Redox Signalling. 2018 Jun; 28 (16): 1483–1502.
495
Simm A. et al. Protein glycation – Between tissue aging and protection // Experimental Gerontology. 2015 Aug; 68: 71–75.
496
Liagi T., Stojiljkovic M., Wetzjer R. Toxin-induced hormesis may restrain aging // Biogerontology. 2019 Mar; 20: 571–581.
497
Rattan S. I. S. Chapter 18 – Hormesis for Healthy Aging // The Science of Hormesis in Health and Longevity. P. 201–212. Academic Press, 2019.
498
Gladyshev V. N. The free radical theory of aging is dead. long live the damage theory! // Antioxidants & Redox Signalling. 2014 Jan; 20 (4): 727–731.
499
http://origin.who.int/gho/mortality_burden_disease/causes_death/top_10/en
500
Malvezi M. et al. European cancer mortality predictions for the year 2019 with focus on breast cancer // Annals of Oncology. 2019 Mar; 30 (5): 781–787.
501
Macieira-Coelho A. Cancers and the concept of cell senescence // Biogerontology. 2009 Jul; 11: 211–227.
502
См. п. 72.
503
Krtolica A., Parrinello S., Lockett S., Desprez P.-Y., Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging // PNAS. 2001 Oct; 98 (21): 12072–12077.
504
Franceschi C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates // 2018 Mar; 5: 61.
505
Aktipis C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity // Philosophical Transactions of the Royal Society B. 2015 Jul; 370 (1673).
506
Hanahan D. & Weinberg R. A. Hallmarks of cancer: the next generation // Cell. 2011 Mar; 144 (5): 646–674.
507
Carvalho S., Gueiral N., Nogueira E., Henrique R., Oliveira L., Tuchin V. V. Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues // Journal of Biomedical Optics. 2017 Feb; 22 (9): 091506.
508
Chatsirisupachai K., Palmer D., Ferreira S., de Magalhães J. P. A human tissue‐specific transcriptomic analysis reveals a complex relationship between aging, cancer, and cellular senescence // Aging Cell. 2019 Sep; 18 (6): e13041.
509
Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors // Cell. 2005 Feb; 120 (4): 513–522.
510
Peto R., Joe F. J., Lee P. N., Clack J. Cancer and ageing in mice and men // British Journal of Cancer. 1975 Oct; 32: 411–426.
511
Caulin A. F. & Maley C. C. Peto's Paradox: evolution's prescription for cancer prevention // Trends in Ecology & Evolution. 2011 Apr; 26 (4): 175–182.
512
См. п. 36.
513
См. п. 80.
514
Zuckerman V., Wolyniec K., Sionov R. V., Haupt S., Haupt Y. Tumour suppression by p53: the importance of apoptosis and cellular senescence // The Journal of Pathology. 2009 Jun; 219: 3–15.
515
Li T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence // Cell. 2012 Jun; 149 (6): 1269–1283.
516
Serrano M., Lin A. W., McCurrach M. E., Beach D., Lowe S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a // Cell. 1997 Mar; 88 (5): 593–602.
517
Tian X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat // Nature. 2013 Jun; 499: 346–349.
518
Olovnikov A. M. A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon // Journal of Theoretical Biology. 1973 Sep; 41 (1): 181–190.
519
Olovnikov A. Lunasensor, infradian rhythms, telomeres, and the chronomere program of aging // Annals of the New York Academy of Sciences. 2006 Jan; 1057 (1): 112–132.
520
См. п. 64.
521
Humphreys J. et al. Telomere shortening in formerly abused and never abused women // Biological Research for Nursing. 2011 Mar; 14 (2): 115–123.
522
Jacobs T. L. et al. Intensive meditation training, immune cell telomerase activity, and psychological mediators // Psychoneuroendocrinology. 2011 Jun; 36 (5): 664–681.
523
Rode L., Nordestgaard B. G., Bojesen S. E. Long telomeres and cancer risk among 95 568 individuals from the general population // International Journal of Epidemiology. 2016 Oct; 45 (5): 1634–1643.
524
Whittemore K., Vera E., Martínez-Nevado E., Sanpera C., Blasco M. A. Telomere shortening rate predicts species life span // PNAS. 2019 Jul; 116 (30): 15122–15127.
525
Tian X. et al. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 20160443.
526
Gorbunova V. & Seluanov A. Coevolution of telomerase activity and body mass in mammals: From mice to beavers // Mechanisms of Ageing and Development. 2009 Jan – Feb; 130 (1–2): 3–9.
527
Frenck R. W., Blackburn E. H., Shannon K. M. The rate of telomere sequence loss in human leukocytes varies with age // PNAS. 1998 May; 95 (10): 5607–5610.
528
Bodnar A. G. et al. Extension of life-span by introduction of telomerase into normal human cells // Science. 1998 Jan; 279 (5349): 349–352.
529
Jaskelioff M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice // Nature. 2010 Nov; 469: 102–106.
530
De Jesus B. B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer // EMBO Molecular Medicine. 2012 Aug; 4 (8): 691–704.
531
Muñoz-Lorente M. A., Cano-Martin A. C., Blasco M. A. Mice with hyper-long telomeres show less metabolic aging and longer lifespans // Nature Communications. 2019 Oct; 10: 4723.
532
Baird D. M., Rowson J., Wynford-Thomas D., Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells // Nature Genetics. 2003 Jan; 33: 203–207.
533
De Jesus B. B., Schneeberger K., Vera E., Tejera A., Harley C. B., Blasco M. A. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence // Aging Cell. 2011 Aug; 10 (4): 604–621.
534
Fernandez M. L. et al. TA-65, a telomerase activator improves cardiovascular markers in patients with metabolic syndrome // Current Pharmaceutical Design. 2018 May; 24 (17): 1905–1911 (7).
535
См. п. 59.
536
Salvador L., Singaravelu G., Harley C. B., Flom P., Suram A., Raffaele J. M. A natural product telomerase activator lengthens telomeres in humans: a randomized, double blind, and placebo controlled study // Rejuvenation Research. 2016 Dec; 19 (6): 478–484.
537
Abdul-Aziz A. M. et al. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment // Blood. 2019 Jan; 133 (5): 446–456.
538
Pedesen J. et al. Declining cancer incidence at the oldest ages: Hallmark of aging or lower diagnostic activity? // Journal of Geriatric Oncology. 2019 Sep; 10 (5): 792–798.
539
Bonafé et al. What studies on human longevity tell us about the risk for cancer in the oldest old: data and hypotheses on the genetics and immunology of centenarians // Experimental Gerontology. 2002 Oct – Nov; 37 (10–11): 1263–1271.
540
Franceschi C. et al. Accelerated bio‐cognitive aging in Down syndrome: State of the art and possible deceleration strategies // Aging Cell. 2019 Feb; 18 (3): e12903.
541
De la Rosa J. et al. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion // Nature Communications. 2013 Aug; 4: 2268.
542
Fernandez P., Scaffidi P., Markert E., Lee J.-H., Rane S., Misteli T. Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4 // Cell Reports. 2014 Oct; 9 (1): 248–260.
543
Higa K. C. & DeGregory J. Decoy fitness peaks, tumor suppression, and aging // Aging Cell. 2019 Mar; 18 (3): e12938.
544
Van Heemst D. et al. Variation in the human TP53 gene affects old age survival and cancer mortality // Experimental Gerontology. 2005 Jan – Feb; 40 (1–2): 11–15.
545
Zhao Y. et al. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models // eLife. 2018 Mar; 7: e34701.
546
См. п. 110.
547
Baker D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders // Nature. 2011 Nov; 479 (7372): 232–236.
548
Baker D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan // Nature. 2016 Aug; 530 (7589): 184–189.
549
Palmer A. K. et a. Targeting senescent cells alleviates obesity‐induced metabolic dysfunction // Aging Cell. 2019 Mar; 18 (3): e12950.
550
Patil P. et al. Systemic clearance of p16INK4a‐positive senescent cells mitigates age‐associated intervertebral disc degeneration // Aging Cell. 2019 Mar; 18 (3): e12927.
551
Zhu Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs // Aging Cell. 2015 Mar; 14 (4): 644–658.
552
Yousefzadeh M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan // EBioMedicine. 2018 Oct; 36: 18–28.
553
Spindler S. R., Mote P. L., Flegal L. M., Teter B. Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, f1 hybrid mice // Rejuvenation Research. 2013 Apr; 16 (2): 143–151.
554
См. п. 122.
555
Justice J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study // EBioMedicine. 2019 Feb; 40: 554–563.
556
Van Deursen J. M. Senolytic therapies for healthy longevity // Science. 2019 May; 364 (6441): 636–637.
557
http://ir.unitybiotechnology.com/news-releases/news-release-details/unity-biotechnology-reports-promising-topline-data-phase-1-first.
558
Baar M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging // Cell. 2017 Mar; 169 (1): 132–147.e16.
559
См. п. 59.
560
Ozvari B., Nuttall J. R., Sotgia F., Lisanti M. P. Azithromycin and Roxithromycin define a new family of "senolytic" drugs that target senescent human fibroblasts // Aging. 2018 Nov; 10 (11): 3294–3307.
561
Li W., He Y., Zhang R., Zheng G., Zhou D. The curcumin analog EF24 is a novel senolytic agent // Aging. 2019 Jan; 11 (2): 771–782.
562
См. п. 123.
563
Ritschka B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration // Genes & Development. 2017; 31: 172–183.
564
Blagosklonny M. V. Paradoxes of senolytics // Aging. 2018 Dec; 10 (12): 4289–4293.
565
Storer M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning // Cell. 2013 Nov; 155 (5): 1119–1130.
566
Muñoz-Espín D. et al. Programmed cell senescence during mammalian embryonic development // Cell. 2013 Nov; 155 (5): 1104–1118.
567
Goldsmith T. C. Evolvability, population benefit, and the evolution of programmed aging in mammals // Biochemistry (Moscow)/2015 Dec; 82: 1423–1429.
568
Bredesen D. E. The non‐existent aging program: how does it work? // Aging Cell. 2004 Sep; 3 (5): 255–259.
569
Gavrilova N. S., Gavrilov L. A., Severin F. F., Skulachev V. P. Testing predictions of the programmed and stochastic theories of aging: Comparison of variation in age at death, menopause, and sexual maturation // Biochemistry (Moscow). 2012 Jul; 77: 754–760.
570
Skulachev V. P. Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann's hypothesis // Biochemistry (Moscow). 1997 Nov; 62 (11): 1191–1195.
571
Longo V. D., Mitteldorf J., Skulachev V. P. Programmed and altruistic ageing // Nature Reviews Genetics. 2005 Nov; 6: 866–872.
572
Skulachev M. V. & Skulachev V. P. New data on programmed aging – slow phenoptosis // Biochemistry (Moscow). 2014 Oct; 79: 977–993.
573
Zhao Y. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence // PNAS. 2018 Feb; 115 (8): 1801–1806.
574
Bradley A. J., McDonald I. R., Lee A. K. Stress and mortality in a small marsupial (Antechinus stuartii, Macleay) // General and Comparative Endocrinology. 1980 Feb; 40 (2): 188–200.
575
Terry D. F. et al. Lower all‐cause, cardiovascular, and cancer mortality in centenarians' offspring // Journal of the American Geriatrics Society. 2004 Nov; 52 (12): 2074–2076.
576
Kaplanis J. et al. Quantitative analysis of population-scale family trees with millions of relatives // Science. 2018 Apr; 360 (6385): 171–175.
577
Ruby J. G. et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating // Genetics. 2018 Nov; 210 (3): 1109–1124.
578
Gavrilov L. A., Gavrilova N. S., Olshansky S. J., Carnes B. A. Genealogical data and the biodemography of human longevity // Social Biology. 2002; 49 (3–4): 160–173.
579
Yahin A. I. et al. Genetics of aging, health, and survival: dynamic regulation of human longevity related traits // Frontiers in Genetics. 2015 Apr; 6: 122.
580
Hjelmborg J.vB. et al. Genetic influence on human lifespan and longevity // Human Genetics. 2006 Feb; 119: 312.
581
Van Den Berg N. et al. Longevity defined as top 10 % survivors and beyond is transmitted as a quantitative genetic trait // Nature Communications. 2019 Jan; 10: 35.
582
Austad S. N. & Fischer K. E. Sex differences in lifespan // Cell Metabolism. 2016 Jun; 23 (6): 1022–1033.
583
Franceschi C. et al. Do men and women follow different trajectories to reach extreme longevity? // Aging Clinical and Experimental Research. 2000; 12: 77–84.
584
Hoogendijk E. O. et al. Sex differences in healthy life expectancy among nonagenarians: A multistate survival model using data from the Vitality 90+ study // Experimental Gerontology. 2019 Feb; 116: 80–85.
585
Foo Y. Z., Nakagawa S., Rhodes G., Simmons L. W. The effects of sex hormones on immune function: a meta‐analysis // Biological Reviews. 2016 Jan; 92 (1): 551–571.
586
Arsenović-Ranin N. et al. Influence of aging on germinal centre reaction and antibody response to inactivated influenza virus antigens in mice: sex-based differences // Biogerontology. 2019 May; 20: 475–496.
587
Horstman A. M., Dillon E. L., Urban R. J., Sheffield-More M. The role on androgens and estrogens on healthy aging and longevity // The Journals of Gerontology: Series A. 2012 Nov; 67 (11): 1140–1152.
588
Min K.-J., Lee C.-K., Park H.-N. The lifespan of Korean eunuchs // Current Biology. 2012 Sep; 22 (18): R792–R793.
589
См. п. 153.
590
Davis E. J., Lobach I., Dubal D. B. Female XX sex chromosomes increase survival and extend lifespan in aging mice // Aging Cell. 2018 Dec; 18 (1): e12871.
591
Dehbi A. Z. A., Radstake T. R. D. J., Broen J. C. A. Accelerated telomere shortening in rheumatic diseases: cause or consequence? // Expert Review of Clinical Immunology. 2013; 9 (12): 1193–1204.
592
Atzmon G. et al. Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians // PNAS. 2010 Jan; 107 (suppl 1): 1710–1717.
593
Soerensen M. et al. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross‐sectional and longitudinal analysis // Aging Cell. 2011 Dec; 11 (2): 223–227.
594
Criscuolo F., Smith S., Zahn S., Heidinger B. J., Haussmann M. F. Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? // Philosophical Transactions of the Royal Society B. 2018 Mar; 373 (1741): 2016.0440.
595
Robert L. & Labat-Robert J. Longevity and aging: role of genes and of the extracellular matrix // Biogerontology. 2015; 16: 125–129.
596
Pilling L.C. et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants // Aging. 2017 Dec; 9 (12): 2504–2520.
597
Pignolo R. J. Exceptional human longevity // Mayo Clinic Proceedings. 2019 Jan; 94 (1): 110–124.
598
Soerensen M. et al. Evidence from case – control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity // AGE. 2013; 35: 487–500.
599
Niu W., Qi Y., Qian Y., Gao P., Zhu D. The relationship between apolipoprotein E ɛ2/ɛ3/ɛ4 polymorphisms and hypertension: a meta-analysis of six studies comprising 1812 cases and 1762 controls // Hypertension Research. 2009 Oct; 32: 1060–1066.
600
Revelas M. et al. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity // Mechanisms of Ageing and Development. 2018 Oct; 175: 24–34.
601
Morris B. J. et al. FOXO3 – a major gene for human longevity // Gerontology. 2015 Mar; 61 (6): 515–525.
602
Giuliani C. et al. Genetics of human longevity within an eco-evolutionary nature-nurture framework // Circulation Research. 2018 Sep; 123: 745–772.
603
Zeng Y. et al. Sex differences in genetic associations with longevity // JAMA Network Open. 2018 Aug; 1 (4): e181670.
604
Trimmers P. R. H. J. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances // eLife. 2019; 8: e39856.
605
Zenin A. et al. Identification of 12 genetic loci associated with human healthspan // Communications Biology. 2019 Jan; 2: 41.
606
Kowald A. & Kirkwood T. B. L. Can aging be programmed? A critical literature review // Aging Cell. 2016 Aug; 15 (6): 986–998.
607
Gladyshev V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes // Aging Cell. 2016 Apr; 15 (4): 594–602.
608
Delaney M. A., Kinsel M. J., Treuting P. M. Renal pathology in a nontraditional aging model: the naked mole-rat (Heterocephalus glaber) // Veterinary Pathology. 2016 Mar; 53 (2): 493–503.
609
Edrey Y. H., Hanes M., Pinto M., Mele J., Buffenstein R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research // ILAR Journal. 2011; 52 (1): 41–53.
610
Rando T. A. Stem cells, ageing and the quest for immortality // Nature. 2006 Jun; 441: 1080–1086.
611
Lui G.-H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson – Gilford progeria syndrome // Nature. 2011 Feb; 472: 221–225.
612
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006 Aug; 126 (4): 663–676.
613
Lapasset L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state // Genes & Development. 2011; 25: 2248–2253.
614
Abad M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features // Nature. 2013 Sep; 502: 340–345.
615
Ocampo A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming // Cell. 2016 Dec; 167 (7): 1719–1733. E12.
616
Beyret E. et al. Elixir of Life // Circulation Research. 2018 Jan; 122: 128–141.
617
Kurita M. et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue // Nature. 2018 Sep; 561: 243–247.
618
Tan L. et al. Naked mole rat cells have a stable epigenome that resists iPSC reprogramming // Stem Cell Reports. 2017 Nov; 9 (5): 1721–1734.
619
Charlesworth B. Fisher, Medawar, Hamilton and the evolution of aging // Genetics. 2000 Nov; 156 (3): 927–931.
620
Medawar P. B. An unsolved problem of biology. Published for the College by H. K. Lewis, London, 1952.
621
Turan Z. G. et al. Molecular footprint of Medawar's mutation accumulation process in mammalian aging // Aging Cell. 2019 May; 18 (4): e12965.
622
Williams G. C. Pleiotropy, natural selection, and the evolution of senescence // Evolution. 1957 Dec; 11 (4): 398–411.
623
См. п. 80.
624
Jasienska G. et al. Apolipoprotein E (ApoE) polymorphism is related to differences in potential fertility in women: a case of antagonistic pleiotropy // Proceeding of the Royal Society B. Biological sciences. 2015 Mar; 282 (1803): 20142395.
625
См. п. 11.
626
Horvath S. & Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing // Nature Reviews Genetics. 2018 Apr; 19: 371–384.
627
Franceschi C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans // Mechanisms of Ageing and Development. 2007 Jan; 128 (1): 92–105.
628
De Magalhães J. P. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? // The FASEB Journal. 2012 Sep; 26 (12): 4821–4826.
629
Nelson P. & Masel J. Intercellular competition and the inevitability of multicellular aging // PNAS. 2017 Dec; 114 (49): 12982–12987.
630
Gems D. The aging-disease false dichotomy: understanding senescence as pathology // Frontiers in Genetics. 2015 Jun; 6: 212.
631
Blagosklonny M. V. Answering the ultimate question "What is the Proximal Cause of Aging?" // Aging. 2012 Dec; 4 (12): 861–877.
632
См. п.178.
633
Blagosklonny M. V. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition // Cell Cycle. 2006 Sep; 5 (18): 2087–2102.
634
Kapahi P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing tor pathway in aging // Cell Metabolism. 2010 Jun; 11 (6): 453–465.
635
Valvezan A. J. & Manning B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat // Nature Metabolism. 2019 Mar; 1: 321–333.
636
См. п. 205.
637
Wiley C. D. & Campisi J. From ancient pathways to aging cells – connecting metabolism and cellular senescence // Cell Metabolism. 2016 Jun; 23 (6): 1013–1021.
638
Møller N. et al. Effects of growth hormone on glucose metabolism // Hormone Research. 1991; 36 (suppl 1): 32–35.
639
Kim S.-H. & Park M.-J. Effects of growth hormone on glucose metabolism and insulin resistance in human // Annals of Pediatric Endocrinology & Metabolism. 2017 Sep; 22 (3): 145–152.
640
Cohen E. & Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration // Nature Reviews Neuroscience. 2008 Sep; 9: 759–767.
641
Bartke A. Impact of reduced insulin‐like growth factor‐1/insulin signaling on aging in mammals: novel findings // Aging Cell. 2008 Mar; 7 (3): 285–290.
642
Chesnokova V. et al. Excess growth hormone suppresses DNA damage repair in epithelial cells // Journal of Clinical Investigations. 2019 Feb; 4 (3): e125762.
643
Bartke A. Growth hormone and aging: updated review // World Journal of Mens Health. 2019 Jan; 37 (1): 19–30.
644
Laron Z., Kauli R., Lapkina L., Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome // Mutation Research/Reviews in Mutation Research. 2017 Apr – Jun; 772: 123–133.
645
Guevara-Aguirre J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer and diabetes in humans // Science Translation Medicine. 2011 Feb; 3 (70): 70ra13.
646
Laron Z. Lifespan and mortality of patients with Laron syndrome //Laron Z., Kopchick J. (eds) Laron Syndrome – From Man to Mouse. Springer, Berlin, Heidelberg, 2011. Pp. 341–342.
647
Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? // Mechanisms of Ageing and Development. 2005 Feb; 126 (2): 305–307.
648
Seim I. et al. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii // Nature Communications. 2013 Aug; 4: 2212.
649
Riera C. E. & Dillin A. Emerging role of sensory perception in aging and metabolism // Trends in Endocrinology & Metabolism. 2016 May; 27 (5): 294–303.
650
Chopan M. & Littenberg B. The association of hot red chili pepper consumption and mortality: a large population-based cohort study // PLOS One. 2017 Jan; 12 (1): e0169876.
651
Riera C. E. et al. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling // Cell. 2014 May; 157 (5): 1023–1036.
652
Park T. J. et al. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber) // 2008 Jan; 6 (1): e13.
653
Chakraborty T. S. et al. Sensory perception of dead conspecifics induces aversive cues and modulates lifespan through serotonin in Drosophila // Nature Communications. 2019 May; 10: 2365.
654
Kuo T.-H. et al. insulin signaling mediates sexual attractiveness in Drosophila // PLOS Genetics. 2012 Apr; 8 (4): e1002684.
655
Booth L. N., Maures T. J., Yeo R. W., Tantilert C., Brunet A. Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes // eLife. 2019 Jul; 8: e46418.
656
Gendron C. M. et al. Drosophila life span and physiology are modulated by sexual perception and reward // Science. 2014 Jan; 343 (6170): 544–548.
657
Ruben M. A. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine // Science Translational Medicine. 2018 Sep; 10 (458): eaat8806.
658
Longo V. D. & Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan // Cell Metabolism. 2016 Jun; 23 (6): 1048–1059.
659
Zheng X. & Sehgal A. AKT and TOR signaling set the pace of the circadian pacemaker // Current Biology. 2010 Jul; 20 (13): 1203–1208.
660
Karlsson B., Knutsson A., Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people // Occupational & Environmental Medicine. 2001 Nov; 58: 747–752.
661
Lee Y. et al. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment // PLOS Biology. 2019 Apr; 17 (4): e3000228.
662
Kelly J. J., Lanier A. P., Alberts S., Wiggins C. L. Differences in cancer incidence among Indians in Alaska and New Mexico and U. S. Whites, 1993–2002 // Cancer Epidemiology, Biomarkers & Prevention. 2006 Aug; 15 (8): 1515–1519.
663
Young T. K., Kelly J. J., Friborg J., Soininen L., Wong K. O. Cancer among circumpolar populations: an emerging public health concern // International Journal of Circumpolar Health. 2016 Jan; 75 (1): 29787.
664
Shen J. & Tower J. Effects of light on aging and longevity // Ageing Research Reviews. 2019 Aug; 53: 100913.
665
Ahmed R. et al. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time // Aging. 2019 Feb; 11 (3): 950–973.
666
Hindhede M. The effect of food restriction during war on mortality in Copenhagen // JAMA. 1920 Feb; 74 (6): 381–382.
667
Storm A., Jensen R. A., Oslo M. D. Mortality from circulatory diseases in Norway 1940–1945 // The Lancet. 1951 Jan; 257 (6647): 126–129.
668
Willcox B. J. et al. Caloric restriction, the traditional okinawan diet, and healthy aging // Annals of the New York Academy of Sciences. 2007 Nov, 1114 (1): 434–455.
669
Kagawa Y. Impact of westernization on the nutrition of Japanese: Changes in physique, cancer, longevity and centenarians // Preventive Medicine. 1978 Jun; 7 (2): 205–217.
670
McCay C. M., Maynard L. A., Sperling G., Barnes L. L. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories: four figures // The Journal of Nutrition. 1939 Jul; 18 (1): 1–13.
671
Lee C. & Longo V. Dietary restriction with and without caloric restriction for healthy aging // F1000Research. 2015 Jan; 5: 117.
672
Swindell W. R. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan // Ageing Research Reviews. 2012 Apr; 11 (2): 254–270.
673
Colman R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys // Science. 2009 Jul; 325 (5937): 201–204.
674
Mattison J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys: the NIA study // Nature. 2012 Sep; 489: 7415.
675
Wang T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of epigenetic networks // bioRxiv. 2019 Nov.
676
Gribble K. E., Moran B. M., Jones S., Corey E. L., Welch D. B. M. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature // Experimental Gerontology. 2018 Dec; 114: 99–106.
677
Allen B. D. et al. Hyperadrenocorticism of calorie restriction contributes to its anti‐inflammatory action in mice // Aging Cell. 2019 Apr; 18 (3): e12944.
678
См. п. 208.
679
Kopeina G. S., Senichkin V. V., Zhivotovsky B. Caloric restriction – A promising anti-cancer approach: From molecular mechanisms to clinical trials // Biochimica et Biophysica Acta. Reviews on Cancer. 2017 Jan; 1867 (1): 29–41.
680
Kalm L. M., Semba R. D. They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment // Journal of Nutrition. 2005 Jun; 135 (6): 1347–1352.
681
Walford R. L., Mock D., Verdery R., MacCallum T. Calorie restriction in Biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period // The Journals of Gerontology: Series A. 2002 Jun; 57 (6): B211–B224.
682
Ravussin E. et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity // Journals of Gerontology: Series A. 2015 Sep; 70 (9): 1097–110.
683
Fontana L. et al. Effects of 2‐year calorie restriction on circulating levels of IGF‐1, IGF‐binding proteins and cortisol in nonobese men and women: a randomized clinical trial // Aging Cell. 2016 Feb; 15 (1): 22–27.
684
Franceschi C. Ostan R., Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? // Annual Review of Nutrition. 2018 May; 38 (1): 329–356.
685
Urlacher S. S. et al. Constraint and trade-offs regulate energy expenditure during childhood // Science Advances. 2019 Dec; 5 (12): eaax1065.
686
Solon-Biet S. M. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control // Nature Metabolism. 2019 Apr; 1: 532–545.
687
См. п. 255.
688
Walters R. O. et al. Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans // Cell Reports. 2018 Oct; 25 (3): 663–676. E6.
689
Valvezan A. J. & Manning B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat // Nature Metabolism. 2019 Mar; 1: 321–333.
690
Wang S.-Y. et al. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide // Cell Cycle. 2019 Jun; 18 (14): 1573–1587.
691
Parkhitko A. A., Jouandin P., Mohr S. E., Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species // Aging Cell. 2019 Aug; 18 (6): e13034.
692
De Cabo R., Carmona-Gutierrez D., Bernier M., Hall M. N., Madeo F. The search for antiaging interventions: from elixirs to fasting regimens // Cell. 2014 Jun; 157 (7): 1515–1526.
693
Newman J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice // Cell Metabolism. 2017 Sep; 26 (3): 547–557.e8.
694
Shimazu T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor // Science. 2013 Jan; 339 (6116): 211–214.
695
Roberts M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice // Cell Metabolism. 2017 Sep; 26 (3): 539–546.e5.
696
Kosinski C. & Jornayvaz F. R. Effects of ketogenic diets on cardiovascular risk factors: evidence from animal and human studies // Nutrients. 2017 May; 9 (5): 517.
697
Paoli A., Rubini A., Volek J. S., Grimaldi K. A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets // European Journal of Clinical Nutrition. 2013 Jun; 67: 789–796.
698
См. п. 263.
699
См. п. 263.
700
См. п. 264.
701
См. п. 229.
702
Mitchell S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories // Cell Metabolism. 2019 Jan; 29 (1): 221–228. E3.
703
Stekovic S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans // Cell Metabolism. 2019 Sep; 30 (3): 462–476. E5.
704
Villareal D. T. et al. Effect of two‐year caloric restriction on bone metabolism and bone mineral density in non‐obese younger adults: a randomized clinical trial // Journal of Bone and Mineral Research. 2015 Aug; 31 (1): 40–51.
705
Sehgal S. N., Baker H., Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization // The Journal of Antibiotics (Tokyo). 1975 Oct; 28 (10): 727–732.
706
Saunders R. N., Metcalfe M. S., Nicholson M. L. Rapamycin in transplantation: A review of the evidence // Kidney International. 2001 Jan; 59 (1): 3–16.
707
Horvath S., Lu A. T., Cohen H., Raj K. Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation // Aging. 2019 May; 11 (1): 3238–3249.
708
Harrison D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice // Nature. 2009 Jul; 460: 392–395.
709
См. п. 59.
710
Mannick J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly // Science Translational Medicine. 2018 Jul; 10 (449): eaaq1564.
711
Bannister C. A. et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non‐diabetic controls // Diabetes, Obesity and Metabolism. 2014 Jul; 16 (11): 1165–1173.
712
Martin-Montalvo A. et al. Metformin improves healthspan and lifespan in mice // Nature Communications. 2013 Jul; 4: 2192.
713
https://www.afar.org/research/TAME
714
Gómez-Linton D. R. et al. Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging // Biogerontology. 2019 Jun; 20: 583–603.
715
Campisi J. et al. From discoveries in ageing research to therapeutics for healthy ageing // Nature. 2019 Jul; 571: 183–192.
716
Miller R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice // The Journals of Gerontology: Series A. 2011 Feb; 66A (2): 191–201.
717
http://www.natap.org/2010/newsUpdates/012411_02.htm.
718
Admasu T. D. et al. Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling // Developmental Cell. 2018 Oct; 47 (1): 67–79.e5.
719
Huang X. et al Reducing signs of aging and increasing lifespan by drug synergy // Aging Cell. 2013 Apr; 12 (4): 652–660.
720
См. п. 59.
721
Chen D. et al. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans // Cell Reports. 2013 Dec; 5 (6): 1600–1610.
722
См. п. 132.
723
Castillo-Quan J. I. et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity // PNAS. 2019 Oct; 116 (42): 20817–20819.
724
Davidsohn N. et al. A single combination gene therapy treats multiple age-related diseases // PNAS. 2019 Nov; 116 (47): 23505–23511.
725
Fahy G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans // Aging Cell. 2019 Sep; 18 (6): e13028.
726
Konopka A. R. et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults // Aging Cell. 2018 Dec; 18 (1): e12880.
727
Blagosklonny M. V. From rapalogs to anti-aging formula // Oncotarget. 2017 May; 8 (22): 35492–35507.
728
Шульц Е. А. О молодении (пер. Н. Гринфельда) // Смерть и бессмертие I. Новые идеи в биологии. "Смерть и бессмертие I"; цикл "Новые идеи в биологии". – СПб.: Образование, 1914. – С. 148.
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.
Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.
Жизнь на Земле – непостижимая, вездесущая, кишащая миллионами ног, сучков, колючек и зубов вакханалия, в которой мы существуем и из которой мы происходим. Три с половиной миллиарда лет она обходилась без нас, и вот, в последние мгновения истории, из этого хитросплетения животных, растений, грибов и микробов выныривает человек и задается вопросом: кто я такой и в чем смысл моей, человеческой, жизни? В своей дебютной книге эволюционный нейробиолог Николай Кукушкин шаг за шагом воссоздает картину мира от неживой материи до человеческого разума, чтобы найти в прошлом своего вида ответы на вечные вопросы. Оказывается, в человеческом страдании виноваты динозавры, легкие существуют благодаря лишайникам, а главным событием в жизни наших предков за последний эон было превращение в червей.