Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [7]
«Введение в анализ бесконечного».
Однако понятия бесконечного и инфинитезимального привели в начале XIX века к возникновению серьезных проблем в математике и в конце концов были полностью сметены с дороги в ходе большой реформы математики. В современный анализ эти концепции не допускаются.>{A1} Но они застряли в словарном запасе математиков, и в этой книге я нередко буду использовать слово «бесконечность». Надо только помнить, что оно представляет собой просто удобное и выразительное сокращение для более строгих понятий. Каждое математическое утверждение, где присутствует слово «бесконечность», можно переформулировать, не используя этого слова.
Когда мы говорим, что сумма гармонического ряда равна бесконечности, на самом деле имеется в виду, что если задаться сколь угодно большим числом S, то сумма гармонического ряда[3] рано или поздно превысит S. Видите? Никаких «бесконечностей». Во второй трети XIX века анализ был целиком переписан на языке подобного рода. Если какое-то выражение нельзя переписать таким образом, то оно не допускается в современную математику. Далекие от математики люди иногда меня спрашивают: «Раз вы знаете математику, ответьте на вопрос, который меня всегда занимал: сколько будет бесконечность разделить на бесконечность?» На это я могу ответить только: «Вы произносите слова, которые не имеют никакого смысла. Это не математическая фраза. Вы говорите о „бесконечности“ так, как если бы это было число. Но это не число. С таким же успехом вы могли бы спросить „Сколько будет истина разделить на красоту?“ Я ничего не могу по этому поводу сказать. Я умею делить только числа, а „бесконечность“, „истина“, „красота“ — это не числа».
Каково же тогда современное определение анализа? Для наших целей, как мне кажется, подойдет такое определение: это изучение пределов. Понятие предела лежит в основе анализа. Например, все дифференциальное и интегральное исчисление, составляющее наиболее значительную часть анализа, основано на понятии предела.
Рассмотрим такую числовую последовательность: >1/>1, >3/>2, >7/>5, >17/>12, >41/>29, >99/>70, >239/>169, >577/>408, >1393/>985, >3363/>2378, …. Каждая следующая дробь получена из предыдущей по простому правилу: новый знаменатель равен сумме старого числителя и старого знаменателя, а новый числитель равен сумме старого числителя и удвоенного старого знаменателя. Эта последовательность сходится к квадратному корню из числа 2. Например, возведение в квадрат числа >3363/>2378 дает >11309769/>5654884, что равно 2,000000176838287…. Говорят, что предел этой последовательности равен √2.
Рассмотрим еще один пример последовательности: >4/>1, >8/>3, >32/>9, >128/>45, >768/>225, >4608/>1575, >36864/>11025, >294912/>99225, …. Здесь N-й член последовательности получается так: если N четно, то умножаем предыдущий член на >N/>(N + 1), а если N нечетно, то умножаем предыдущий член на >(N + 1)/>N. Такая последовательность сходится к числу π. Последняя из приведенных дробей равна 2,972154… (данная последовательность сходится очень медленно).[4] А вот еще пример: 1>1, (1>1/>2)>2, (1>1/>3)>3, (1>1/>4)>4, (1>1/>5)>5, … — эта последовательность сходится к числу, которое примерно равно 2,718281828459. Это необычайно важное число, и мы будем использовать его в дальнейшем.
Стоит заметить, что приведенные только что примеры — это примеры последовательностей, т.е. наборов чисел, записанных через запятую. Это не ряды, члены которых надо складывать. Но с точки зрения анализа ряд — это все-таки слегка замаскированная последовательность. Утверждение «ряд 1 + >1/>2 + >1/>4 + >1/>8 + >1/>16 + >1/>32 + … сходится к 2» математически эквивалентно такому утверждению: «последовательность 1, 1>1/>2, 1>3/>4, 1>7/>8, 1>15/>16, 1>31/>32, … сходится к 2». Четвертый член этой последовательности представляет собой сумму первых четырех членов ряда и т.д. (Название последовательности такого типа на математическом языке — последовательность частичных сумм данного ряда.) Аналогично, утверждение «гармонический ряд расходится» эквивалентно утверждению «последовательность 1, 1>1/>2, 1>5/>6, 2>1/>12, 2>17/>60, 2>27/>32, … расходится». В этой последовательности N-й член равен предыдущему плюс >1/>N.
Все это относится к анализу, т.е. к изучению пределов — того, как именно числовая последовательность может приближаться к некоторому предельному числу, никогда точно его не достигая. Когда говорится, что последовательность продолжается неограниченно, имеется в виду, что, сколько бы членов мы уже ни выписали, всегда можно написать следующий. Когда говорится, что последовательность имеет предел, равный a, имеется в виду, что, какое бы малое число x мы ни взяли, начиная с некоторого момента каждый член последовательности будет отличаться от a на величину, меньшую, чем выбранное x. А если вы предпочитаете говорить «Последовательность стремится к бесконечности» или «Предел N-го члена при N, стремящемся к бесконечности, есть a», то вы вправе так выражаться, если вы сами осознаете, что это просто удобная фигура речи.
Традиционное деление на дисциплины внутри математики таково.
• Арифметика — наука о целых числах и дробях. Пример теоремы из арифметики: вычитание нечетного числа из четного дает в ответе нечетное число.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.