Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [40]
Если вы когда-нибудь слушали лекции по дифференциальному исчислению, то все это вам хорошо знакомо. Дифференциальное исчисление в действительности начинается с такого утверждения: из любой функции f можно произвести другую функцию g, которая выражает наклон функции f при любом ее аргументе. Если f — это ln x, то g — это 1/x. Произведенная таким образом функция называется, как ни странно, производной функции f. Например, 1/x — это производная функции ln x. Если вам дали какую-то функцию f, то процесс нахождения ее производной называется дифференцированием.
Дифференцирование — действие, которое подчиняется некоторым простым правилам. Например, оно прозрачно для нескольких основных арифметических операций. Если производная функции f — это g, то производная функции 7f — это 7g. (Так что производная от 7∙ln x равна 7/x.) Производная суммы f + g — это производная функции f плюс производная функции g. Правда, все не совсем так для умножения: производная произведения f и g не равна произведению производной функции f на производную функции g.[58]
Единственные функции, кроме логарифма, производные которых нам понадобятся в этой книге, — это простые степенные функции x>N. Приведем без доказательства тот факт, что для любого числа N производная функции x>N есть функция Nx>N−1. Таблица 7.1 дает некоторые производные степенных функций.
Функция | Производная |
---|---|
x>−3 | −3x>−4 |
x>−2 | −2x>−3 |
x>−1 | −x>−2 |
x>0 | 0 |
x>1 | 1 |
x>2 | 2x |
x>3 | 3x>2 |
Таблица 7.1. Производные функций x>N.
Конечно, x>0 — это просто единица, а график этой функции — горизонтальная прямая. У нее нет наклона — точнее, нулевой наклон. Дифференцирование любого фиксированного числа дает нуль. А x>1 — это просто x, график же представляет собой прямую, идущую по диагонали вверх и покидающую рисунок через правый верхний угол. Наклон ее повсюду равен 1. Заметим, что нет такой степенной функции, производная которой была бы равна x>−1, хотя x>0 вроде бы стоит на правильном месте, чтобы дать такую производную. Это неудивительно, поскольку мы уже знаем, что производная ln x есть как раз x>−1. Это еще одно свидетельство того, что ln x как будто пытается выдать себя за x>0.
Вы, должно быть, помните мои слова о том, что математики обожают все обращать. Если задано выражение P через Q, то как выразить Q через P? Именно так мы исходно и получили логарифмическую функцию — как обращение показательной функции. Если a = e>b, тот как найти b через a? Как ln а.
Так вот, предположим, что мы продифференцировали функцию f и получили функцию g. То есть g представляет собой производную функции f. А f представляет собой… (что именно?!) функции g? В чем состоит обращение дифференцирования? Производная ln x — это 1/x, так что ln x — это… (что?) функции 1/x? Ответ: интеграл, вот что. Обращение производной — это интеграл, а обращение дифференцирования — это интегрирование. Поскольку вся эта деятельность прозрачна для умножения на фиксированное число, переворачивание таблицы 7.1 вверх ногами и некоторая ее «доводка» дадут нам обратную операцию, которая и представлена в таблице 7.2. И вообще, если только N не равно −1, то интеграл от функции x>N равен x>N+1/(N + 1). (Взгляд на таблицу еще раз показывает, как функция ln x изо всех сил старается вести себя как функция x>0, каковой она, конечно, не является).
Функция | Интеграл |
---|---|
x>−3 | −>1/>2x>−2 |
x>−2 | −x>−1 |
x>−1 | ln x |
x>0 | x |
x>1 | >1/>2x>2 |
x>2 | >1/>3x>3 |
x>3 | >1/>4x>4 |
Таблица 7.2. Интегралы функций x>N.
Если производные годятся для того, чтобы выражать наклон функции — т.е. скорость, с которой функция изменяется в данной точке, — то для чего же годятся интегралы? Ответ: для нахождения площадей под графиками.
Рисунок 7.3. Для чего пригодно интегрирование.
Функция, показанная на рисунке 7.3, а это в действительности функция 1/x>4, т.е., другими словами, x>−4, — ограничивает собой некоторую площадь между аргументами x = 2 и x = 3. Чтобы найти эту площадь, сначала надо найти интеграл от x>−4. Согласно приведенному выше общему правилу, этот интеграл равен −>1/>3x>−3, т.е. −1/(3x>3). Эта функция, как и всякая другая, имеет значение для каждого x из своей области определения. Чтобы найти площадь между аргументами 2 и 3, надо вычислить значение интеграла при аргументе 3, затем вычислить значение интеграла при аргументе 2, а потом вычесть второе значение из первого.
При x = 3 значение функции −1/(3x>3) равно −>1/>81, при x = 2 оно составляет −>1/>24. Вычитаем, не забывая, что вычесть отрицательное число — это все равно что прибавить соответствующее положительное: −>1/>81 − (−>1/>24) = >1/>24 − >1/>81, что равно >19/>648, т.е. примерно 0,029321.
У математиков есть специальный способ для записи всей этой процедуры:
, что читается как «интеграл от икс в минус четвертой степени по дэ-икс от двух до трех». (Не слишком озадачивайтесь этим самым «по dх» — назначение этих слов состоит в указании, что именно x является основной переменной, с которой мы работаем, и именно ее интеграл надо найти. Если под знаком интеграла окажутся еще другие переменные, то они будут там присутствовать праздно, интегрирование ведется не по ним. В главе 19 у нас появится такой пример.)За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.