Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [4]
Джон Дербишир
Хантингтон, Лонг-Айленд
Июнь 2002 г.
Часть первая
Теорема о распределении простых чисел
Глава 1. Карточный фокус
Как и многие другие представления, это начинается с колоды карт.
Возьмем обычную колоду из 52 карт; положим ее на стол, подровняв со всех сторон. А теперь сдвинем самую верхнюю карту колоды, не пошевелив при этом ни одну из остальных карт. Насколько можно сдвинуть верхнюю карту, чтобы она еще не упала?
Ответ понятен: на половину длины карты, что мы и видим на рисунке 1.1. Если подвинуть ее так, чтобы на весу оказалось более половины карты, она упадет. Точка опрокидывания находится в центре тяжести карты, т.е. на середине ее длины.
Рисунок 1.1.
Теперь сделаем кое-что еще. Пусть верхняя карта так и лежит, сдвинутая на половину своей длины — т.е. с максимальным нависанием, — а мы начнем осторожно сдвигать следующую карту. Насколько в сумме могут нависать две верхние карты?
Фокус состоит в том, что эти две карты надо рассматривать как единое целое. Где у этого целого находится центр тяжести? Ясно, что посередине общей длины — длины в полторы карты. Значит, центр тяжести расположен на расстоянии в три четверти длины карты от выступающего края верхней карты (см. рисунок 1.2). Суммарное нависание, следовательно, равно трем четвертям длины карты. Заметим, что верхняя карта по-прежнему свисает со второй на половину своей длины. Но две верхние карты мы сдвигали как единое целое.
Рисунок 1.2.
Если теперь начать двигать третью карту и посмотреть, насколько можно увеличить нависание, окажется, что ее можно сдвинуть на одну шестую длины карты. Как и ранее, надо воспринимать три верхние карты как единое целое. Центр тяжести тогда расположен на расстоянии в одну шестую длины карты от выдвинутого края третьей карты (см. рисунок 1.3).
Рисунок 1.3.
За край у нас выдвинута одна шестая третьей карты, одна шестая плюс одна четверть второй карты, а также одна шестая плюс одна четверть плюс одна вторая верхней карты, что в сумме дает полторы карты:
Это половина от длины трех карт; вторая половина находится за точкой опрокидывания. На рисунке 1.4 изображено, что у нас получилось после максимально возможного сдвига третьей карты.
Рисунок 1.4.
Полное нависание теперь составляет одну вторую (за счет верхней карты) плюс одна четверть (за счет второй карты) плюс одна шестая (за счет третьей). Всего — одиннадцать двенадцатых длины карты. Потрясающе!
Можно ли добиться нависания, превышающего длину одной карты? Да, можно. Прямо следующая карта — четвертая сверху — при осторожном сдвигании добавит к нависанию одну восьмую длины карты. Я не буду проделывать все эти арифметические выкладки — или поверьте мне, или сделайте их сами, подобно тому как мы это только что сделали для трех первых карт. Вот чему равно полное нависание с четырьмя картами: одна вторая плюс одна четверть плюс одна шестая плюс одна восьмая — все вместе одна и одна двадцать четвертая длины карты (см. рисунок 1.5).
Рисунок 1.5.
Если продолжать действовать в том же духе и целиком использовать всю колоду, то за счет пятидесяти одной карты накопится нависание, равное
(самую нижнюю карту сдвигать бессмысленно). Такая сумма на самую толику меньше, чем 2,25940659073334. Таким образом, мы добились полного нависания более чем в две с четвертью длины! (Рис. 1.6.)
Рисунок 1.6.
Я был студентом, когда узнал про это. Дело было в летние каникулы, и я занимался подготовкой к следующему семестру, пытаясь несколько опередить программу. Свой вклад в оплату обучения я вносил, нанимаясь на время каникул рабочим на стройки — в Англии в те времена профсоюзы не сильно контролировали этот сектор. На следующий день после того, как я узнал про фокус с картами, мне предстояло в одиночку прибраться во внутренней части строящегося здания, где пачками хранились сотни больших квадратных потолочных панелей. Часа два я с забавлялся со стопкой из 52 панелей, пытаясь добиться нависания в две с четвертью панели. Проходивший мимо прораб застал меня глубоко погруженным в созерцание гигантской колышущейся башни, составленной из потолочных панелей, и он, я думаю, утвердился в своих худших подозрениях относительно целесообразности найма студентов.
Есть одна вещь, которую очень любят делать математики и которая оказывается очень плодотворной, — это экстраполировать, т.е. брать конкретную задачу и распространять ее выводы на более широкую область.
В нашей конкретной задаче у нас было 52 карты. Оказалось, что полное нависание составило более чем две с четвертью карты.
Но почему 52 карты? А если бы было больше? Сотня? Миллион? Триллион? А предположим, что у нас имелся бы неограниченный запас карт — какого максимального нависания мы смогли бы тогда добиться?
Сначала взглянем на нашу постепенно растущую формулу. При 52 картах полное нависание составило
Поскольку все знаменатели здесь четные, можно вынести одну вторую за скобки и переписать в виде
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Если вы хотите поразить одноклассников молниеносным решением квадратных уравнений [КУ], давайте развлечемся.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.