Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [36]
Да. Может. И именно так дело и обстоит. Возьмем любые два числа без общего делителя и будем последовательно прибавлять одно к другому. Получим бесконечно много простых чисел (наряду с бесконечно большим количеством не простых). Гаусс высказал предположение, что так должно быть, — зная мощь Гаусса, хочется сказать, что он это чувствовал интуитивно, — но твердо доказал это Дирихле в той работе 1837 года. Именно в доказательстве, которое привел Дирихле, реализовалась первая часть того самого великого соединения.
На самом деле все даже еще интереснее. Возьмем любое положительное целое число, скажем, 9. Как много чисел, меньших, чем 9, не имеют общего делителя с девяткой (единица не считается за делитель)? Таких чисел шесть — это 1, 2, 4, 5, 7, 8. Будем по очереди брать каждое из них и последовательно прибавлять к нему девятку.
Каждая из этих шести последовательностей содержит не просто бесконечно много простых чисел (выделены жирным), но и одну и ту же долю простых чисел. Другими словами, представим себе, что последовательности продолжены до окрестности какого-то очень большого числа N, а не просто до окрестности числа 134; тогда каждая последовательность будет содержать примерно одно и то же количество простых чисел, причем если верна Теорема о распределении простых чисел, то около >1/>6(N∙ln N) (впрочем, эта теорема еще не была доказана во времена Дирихле). Если N — это 134, то >1/>6(N∙ln N) составляет около 4,55983336…. Приведенные выше шесть последовательностей содержат 5, 5, 4, 5, 4 и 5 простых чисел, что дает среднее 4,6666… — на 2,3 процента больше, чем утверждается, что совсем неплохо для такой маленькой выборки.
Для доказательства своего результата Дирихле начал с арифметики в той форме, в какой она была подробно развита Гауссом в Disquisitiones Arithmeticae. Математики называют ее «арифметикой сравнений». Ее можно представлять себе как арифметику циферблата. Временно заменим 12 на циферблате часов на 0. Двенадцать часовых отметок на циферблате теперь имеют вид 0, 1, 2, 3, …, 11. Если времени сейчас восемь часов, а вы прибавите 9 часов, то что получится? Ага, вы получите пять часов. В данной арифметике, таким образом, 8 + 9 ≡ 5. Или, как это выражают математики, 8 + 9 ≡ 5 (mod 12), что читается как «девять плюс восемь сравнимо с пятью по модулю 12». Фраза «по модулю двенадцати» означает «я определяю результаты по циферблату с 12 часовыми отметками, от 0 до 11». Это может показаться тривиальным, но в действительности арифметика сравнений уходит очень глубоко и полна странных и трудных результатов. Гаусс был в ней великим гроссмейстером; ни одна из семи глав Disquisitiones Arithmeticae не обходится без знака ≡.
Не забудем, что Disquisitiones была постоянным спутником Дирихле в его молодые годы. Когда он приступил к упомянутой выше задаче в 1836 или 1837 году, ему было уже тридцать с небольшим лет, и к тому времени он не раз уже проштудировал работу Гаусса по сравнениям. Затем каким-то образом в поле его зрения попал результат Эйлера 1737 года — Золотой Ключ. Это и дало ему подсказку. Он соединил две вещи вместе, применил некоторые элементарные методы анализа и получил свое доказательство.
Дирихле, таким образом, был первым, кто подобрал Золотой Ключ — связующее звено между арифметикой и анализом — и всерьез воспользовался им. Однако (если продолжить ту аналогию, которую я здесь развиваю) утверждение о том, что он еще и повернул ключ, было бы некоторым преувеличением. Скорее я бы сказал, что он его взял, оценил его красоту и потенциальную мощь, затем отложил его в сторону, но использовал как образец для другого похожего ключа — серебряного, можно сказать, — чтобы отпереть дверь, ведущую к стоявшей перед ним конкретной проблеме. Великое соединение — аналитическая теория чисел — появилось во всем своем великолепии лишь 22 года спустя, в работе Римана 1859 года.
Вспомним, однако, что Риман был одним из учеников Дирихле и, без сомнения, знал о его работах. Действительно, в первом же абзаце своей статьи 1859 года он упоминает Дирихле вместе с Гауссом. Они были двумя его математическими кумирами. Если Риман повернул ключ, то Дирихле сначала показал ему этот ключ и продемонстрировал, что он в самом деле может что-то отпереть; и именно Дирихле заслуженно принадлежит бессмертная слава создания аналитической теории чисел.
Но что же представляет собой этот Золотой Ключ? Что именно оставил Леонард Эйлер, работая в своей комнате наедине со свечой, когда по улицам Санкт-Петербурга пробирались тайные агенты Бирона, что именно оставил он — для того чтобы через сто лет это нашел Дирихле?
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.