Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [100]
Если включить значения на концах, то перед нами будет 10 000 приготовленных для исследования чисел, простирающихся от 0 до 10 000. Поскольку имеется 9999 интервалов между последовательными числами, средний интервал равен 10 000 : 9999, что лишь совсем чуть-чуть больше единицы.
Теперь можно задавать статистические вопросы. Например: как именно интервалы отклоняются от среднего? Сколь многие из них имеют длину меньше единицы?[175] Ответ: 5 349. У скольких из них длина больше 3? Ни у одного. Этот результат радикально отличается оттого, что получается из идеально случайного разброса[176], где эти числа соответственно равны 6 321 и 489. Это подтверждает те выводы, которые можно извлечь из рисунков 18.2 и 18.3. Наши нули не разбросаны случайным образом. Они более многочисленны вблизи среднего интервала (который слегка превышает 1), и при этом имеется острая недостача интервалов малой или большой величины.
Подсчитав число интервалов величиной от 0 до 0,1, от 0,1 до 0,2 и т.д. и нанеся полученные результаты на гистограмму, масштаб которой выбран так, что полная площадь равна 9999, получаем рисунок 18.5.
Рисунок 18.5. Закон Монтгомери-Одлыжко (распределение расстояний между нулями дзета-функции от 90 001-го до 100 000-го).
Там показано распределение интервалов между выбранными корнями и для сравнения — кривая, предсказываемая теорией ГУА. Совпадение не слишком хорошее, но и наша выборка не так уж велика или находится недостаточно высоко на критической прямой. Тем не менее соответствие достаточно хорошее, вполне в пределах отклонений, допускаемых случайностью; разумеется, совпадения в статье Одлыжко намного лучше.[177]
Итак: да, судя по всему, нетривиальные нули дзета-функции и собственные значения случайных эрмитовых матриц некоторым образом связаны друг с другом. Это ставит нас перед довольно серьезным вопросом, который все время висел в воздухе с момента встречи Хью Монтгомери и Фримена Дайсона в Фалд-Холл в 1972 году.
Нетривиальные нули дзета-функции Римана появились при исследовании распределения простых чисел. Собственные значения случайных эрмитовых матриц появились при исследовании поведения систем субатомных частиц, подчиняющихся законам квантовой механики. Скажите, пожалуйста, что вообще может быть общего между простыми числами и поведением субатомных частиц?
Глава 19. Поворот Золотого Ключа
А теперь попытаемся проникнуть в самую сердцевину работы Римана 1859 года. Это по необходимости подразумевает знакомство с некоторым довольно продвинутым математическим аппаратом, который использовал сам Риман. Мне придется без лишних слов перескакивать через по-настоящему трудные места, преподнося их как faits accomplis[178]; я просто попытаюсь описать логические этапы в рассуждениях Римана, говоря при этом нечто вроде: «У математиков есть способ перейти от этого к этому», не объясняя, в чем же этот способ состоит и как он работает.
Я надеюсь, что у читателя в итоге сложится впечатление по крайней мере насчет общей логической канвы тех шагов, которым следовал Риман. Но даже и это не удастся без небольшой толики анализа, существенные моменты которого уже изложены в главе 7.vi-vii. Несколько следующих разделов могут показаться вам сложными. Но наградой будет результат столь же мощный, сколь и прекрасный, из которого вытекает все — сама Гипотеза, ее значение и ее связь с распределением простых чисел.
Для начала выскажу нечто противоречащее тому, что было сказано в главе 3.iv. Ну, вроде как противоречащее. Там мы говорили, что не слишком интересно рисовать график функции π(N), которая подсчитывает для нас простые числа. В том месте книги так и было. А теперь это не так.
Однако сначала кое-что подкорректируем. Вместо того чтобы писать π(N), что на глаз математика выглядит как «число простых чисел, не превышающих натурального числа N», будем писать π(x), что должно означать «число простых чисел, не превышающих вещественного числа x». Ничего особенного мы не сделали. Разумеется, число простых чисел, не превышающих 37,51904283, есть просто число простых чисел, не превышающих 37 (и равно двенадцати: это 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37). Но нам предстоит познакомиться с некоторым объемом дифференциального и интегрального исчисления, и поэтому желательно находиться в царстве всех, а не одних только целых чисел.
И еще одна корректировка. При постепенном приближении к аргументу x в пределах некоторого интервала значений функция π(x) внезапно совершает прыжки. Пусть, например, x постепенно переходит от числа 10 к числу 12. Число простых чисел, не превышающих 10, равно 4 (это 2, 3, 5 и 7), так что значение функции равно 4, когда x = 10 и, равным образом, разумеется, когда x = 10,1, 10,2, 10,3 и т.д. Но при аргументе 11 это значение внезапно совершает прыжок к 5; и для 11,1, 11,2, 11,3, … оно твердо стоит на 5. Математики называют такое «ступенчатой функцией». И здесь нам потребуется корректировка, которую используют довольно часто, когда имеют дело со ступенчатыми функциями. Ровно в той точке, где π(x) совершает прыжок, присвоим ей значение, лежащее посередине между значениями, от которого и до которого она прыгает. Так, при аргументе 10,9, или 10,99, или 10,999999 функция имеет значение 4; при аргументе 11,1, или 11,01, или 11,000001 функция имеет значение 5; но при аргументе 11 это будет 4,5. Сожалею, если это представляется вам немного необычным, но это важно для наших целей. Если мы так сделаем, то все рассуждения из этой главы и из главы 21 будут иметь силу; а если нет, то они не будут работать.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.