Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [10]
Всё это изобилие государств — королевств, княжеств, герцогств и великих герцогств, — составлявших во времена Римана северную Германию, по большей части представляло собой независимые друг от друга образования, каждое из которых проводило свою собственную внутреннюю политику. И в этой аморфной структуре находилось место для гордости за свое государство и для соревнования с соседями.
Во многих аспектах пример подавала Пруссия. Восточные области этого королевства оставались единственным германским государством, сохранившим после поражений 1806-1807 годов по крайней мере некоторую степень независимости от Наполеона. Под давлением постоянно нависающей угрозы пруссаки сконцентрировались на реформе внутренней жизни; в 1809-1810 годах, в частности, под руководством философа, дипломата и лингвиста Вильгельма фон Гумбольдта в Пруссии пересмотрели всю систему среднего образования. Классицист фон Гумбольдт был человеком, жившим в башне из слоновой кости, который однажды сказал: «Alles Neue ekelt mich an» — «Все новое меня отвращает» (его брат Александр был великим путешественником и естествоиспытателем). Но, как ни странно, реформы, проведенные этим закоренелым реакционером, в конце концов превратили образовательную систему в германских государствах в самую передовую в Европе с точки зрения учебного процесса.
В основу образовательной системы была положена десятилетняя гимназия, предназначенная для обучения с десятилетнего до двадцатилетнего возраста. В самом первоначальном виде учебный план в гимназии выглядел следующим образом:
латынь | 25 процентов |
греческий | 16 процентов |
немецкий | 15 процентов |
математика | 20 процентов |
история и география | 10 процентов |
естественные науки | 7 процентов |
религия | 7 процентов |
Для сравнения, в 1840 году в широко известных английских школах для мальчиков 75-80 процентов учебного времени — 40 часов в неделю — отводилось на изучение классических языков и литературы (Джонатан Гаторн-Харди, «Феномен частных школ»).
В Квикборне не было гимназии, и Риман начал по-настоящему учиться в школе лишь в четырнадцатилетнем возрасте, что соответствовало четвертому классу гимназии. Сама гимназия находилась в городе Ганновере, столице королевства, в 80 милях от Квикборна. Выбор в пользу Ганновера определялся тем, что там жила бабушка Бернхарда по материнской линии, и это позволяло семье Риман сэкономить на плате за проживание. До поступления в гимназию Римана обучал отец при некотором содействии деревенского учителя по фамилии Шульц.
Четырнадцатилетнему Риману пришлось в Ганновере несладко: он был смертельно застенчив и к тому же сильно тосковал по дому. Его единственным внеклассным занятием, насколько нам известно, был поиск доступных ему по карману подарков, которые он посылал на дни рождения родителям, братьям и сестрам. После смерти бабушки в 1842 году ситуация несколько поправилась — Римана перевели в другую гимназию, на этот раз в городе Люнебург. Вот как Дедекинд описывает новое положение дел.
Большая близость к дому и представившаяся в силу этого возможность проводить каникулы вместе с семьей добавили немного счастья в его более поздние школьные годы. Нет сомнения, что путешествия туда и обратно, в основном совершавшиеся пешком, изматывали его физически, как никогда ранее.[10] Его мать, которую, увы, ему скоро предстояло потерять, выражала в своих письмах сильное беспокойство по поводу его здоровья, прибавляя многочисленные сердечные предупреждения, чтобы он избегал слишком больших физических нагрузок.
Не похоже, чтобы Риман был хорошим учеником. При его складе ума он мог сосредоточиваться только на вещах, которые он находил интересными; по большей части это была математика. Кроме того, он был перфекционистом, для которого скрупулезность в написании безупречного сочинения была важнее срока, в который он это сочинение напишет. Чтобы подтянуть его в плане школьных занятий, директор устроил так, что Риман поселился вместе с учителем древнееврейского языка по фамилии Зеффер или Зайфер. Заботами этого господина Риман настолько улучшил успеваемость, что в 1846 году его приняли в Геттингенский университет на богословский факультет. Предполагалось, что он станет священником, как и его отец.
Геттингенский университет был единственным университетом в области юрисдикции Ганноверской церкви, так что это был вполне естественный выбор. Название «Геттинген» будет постоянно возникать на протяжении всей этой книги, поэтому несколько слов о его истории будут нелишними. Геттингенский университет был основан в 1734 году Георгом II Английским (который являлся курфюрстом Ганновера[11]) и быстро попал в число лучших германских провинциальных университетов; в 1823 году в нем обучалось более 1500 студентов.
Однако 1830-е годы были тревожным временем. Из-за политических волнений, затронувших как студентов, так и профессоров, в 1834 году число обучающихся упало до цифры менее чем в 900 человек. Три года спустя ситуация достигла критической стадии, а Геттинген стал известен на всю Европу. В 1837 году король Англии и Ганновера Вильгельм IV умер, не оставив законного наследника, и английский трон перешел к его племяннице Виктории. Ганновер, однако, придерживался салических законов средневековых франков, по которым трон мог наследовать только потомок мужского пола. На этом Англия и Ганновер расторгли взаимные объятия. Новым правителем Ганновера стал Эрнст-Август, старший из здравствовавших потомков Георга III.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.