Происхождение эволюции. Идея естественного отбора до и после Дарвина - [80]

Шрифт
Интервал

Разумеется, эта ДНК не бесполезна. Некодирующая ДНК должна выполнять какую-то функцию — явно важную, — даже если она не кодирует белки. Помимо прочего, она может соответствовать нитям РНК, с которых не считываются белки, но которые влияют на работу клетки. Судя по количеству такой ДНК, управлять клеткой гораздо сложнее, чем управлять человеческим телом. Но, чтобы понять, как все это работает, нам нужно более подробно описать, что происходит в ядре клетки, где содержится ДНК.

Диаметр клеточного ядра — всего около 10 мкм (то есть 0,01 мм). В каждой клетке вашего тела общая длина всех молекул ДНК составляет примерно 1,8 м. Все это упаковано в 46 крошечных цилиндров (23 пары хромосом) суммарной длиной 0,2 мм. Другими словами, длина ДНК в упакованном виде составляет примерно одну десятитысячную от ее «действительной» длины.

Происходит это следующим образом. Существует целая группа белков — гистонов, из которых собран каркас, вокруг которого закручивается и компактно упаковывается ДНК. Восемь гистонов соединяются вместе, образуя своего рода бусину (которая называется «нуклеосома»), и нить ДНК дважды обвивается вокруг этой бусины, как веревка вокруг баскетбольного мяча. Еще один гистон садится на нити ДНК сверху и фиксирует положение этих витков. По обеим сторонам бусины короткий разделительный («спейсерный») участок ДНК обеспечивает соединение со следующей нуклеосомой; так как это соединение является гибким, вся цепочка таких бусин-нуклеосом сворачивается в компактную структуру, которая затем в процессе «сверхспирализации» может свернуться в еще более компактную структуру. Это настоящий шедевр упаковочного искусства. Но все это также означает, что, когда клетке требуется получить доступ к определенному фрагменту генетической информации, соответствующий участок ДНК должен распаковаться ровно настолько, чтобы информацию можно было скопировать на матричную РНК, а затем аккуратно запаковаться обратно. Оказалось, что гистоны не просто образуют каркас, но еще и отвечают за то, как происходит распаковка, считывание и обратная запаковка генов. На данный момент выявлено более пятидесяти типов работы гистонов, некоторые из которых сводятся к активации считывания генов, тогда как другие затрудняют его или оказывают менее явное воздействие. Исследования в этой области продолжаются, но для наших целей достаточно знать, что гистоны участвуют в активации и подавлении экспрессии генов.

Еще один клеточный механизм также контролирует активность генов. Он называется «метилирование», потому что в нем задействованы химические фрагменты, известные как метильные группы. Они возникают тогда, когда «метильный радикал» (CH>3) прикрепляется к нитям ДНК в тех местах, где рядом располагаются основания цитозин и гуанин. Метилирование обычно выступает в роли «выключателя» для гена, поэтому во многих случаях ген может активироваться посредством деметилирования[60].

Благодаря метилированию современные ученые смогли объяснить феномен, который в свое время озадачил Линнея. В 1740-х гг. Линней был шокирован, обнаружив разновидность растения, которое выглядело как льнянка обыкновенная, но с совершенно другими цветами. Это особенно взбудоражило Линнея, потому что его система классификации растений основывалась на внешнем виде цветов; он писал, что это было «не менее примечательно, чем если бы корова родила теленка с волчьей головой». В 1990-х гг. ботаник Энрико Коэн обнаружил, что в этих «монструозных» растениях определенный ген, который отвечает за строение цветка, покрыт массой метильных групп и неактивен. Это свойство передается через семена последующим поколениям.

Метилированию могут также подвергаться молекулы РНК, а кроме того, есть немного более загадочный механизм, благодаря которому нити РНК, которые плавают внутри клетки, модифицируют гистоны или влияют на экспрессию генов. Хотя все эти процессы изучены далеко не полностью, очевидно, что геном не всегда активен одинаковым образом, и, несмотря на то что «книга жизни» остается неизменной, то, какие ее фрагменты будут прочитаны и использованы в качестве руководства к действию, зависит от обстоятельств, в которых оказывается клетка, — от окружающей среды. Процесс выбора таких фрагментов называется эпигенетикой[61]; общепринятого определения этого термина на данный момент не существует, но нам это не особо важно.

Один эксперимент с мышами демонстрирует, как может происходить этот процесс. Существует порода мышей с интересным окрасом шерсти, который контролируется одним геном под названием агути, или сокращенно а. У обычных мышей агути шерсть черная у корней, желтая посредине и черная на кончике волосков, потому что ген а активируется только в середине процесса роста шерсти. Но существует мутантная линия, в которой потомство одной пары родителей из одного помета может иметь разный окрас шерсти — иногда полностью желтый, иногда полностью черный, а иногда промежуточных оттенков. Причем доля разных типов окраса среди потомства меняется, когда беременных мышей кормят пищей, богатой источниками метильных групп. Питание матерей напрямую влияет на цвет шерсти детенышей, выключая (целиком или частично) ген


Еще от автора Джон Гриббин
13,8. В поисках истинного возраста Вселенной и теории всего

Эта книга занимательно рассказывает о том, чего достигла современная наука и чего она еще сможет достичь. В ней описана увлекательная история поиска истинного возраста Вселенной и звезд. По мнению автора, это открытие – одно из величайших достижений человечества, которое доказывает, что современная физика стоит на верном пути к созданию теории всего.Книга будет полезна всем, кто интересуется физикой.


Стивен Хокинг. Жизнь среди звезд

История ученого и личная биография объединились в этой книге, чтобы сделать полным рассказ о выдающемся человеке. Стивен Хокинг был необычным физиком: ему, возможно, удалось сделать больше, чем многим другим представителям академической науки, чтобы расширить наше, обывательское, понимание законов Вселенной. Его теоретические исследования природы черных дыр и оригинальные рассуждения о происхождении космоса расставили новые акценты в области общего знания: в центре внимания впервые оказалась теоретическая физика.


Волки севера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Шесть невозможностей. Загадки квантового мира

Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Рекомендуем почитать
Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.