Природа описывается формулами. Галилей. Научный метод - [10]
Первоначальное обучение он получил на дому, а отец давал сыну уроки музыки (позже Галилео виртуозно играл на лютне). У мальчика также обнаружился интерес и способности к живописи. Иллюстрации, которые Галилей сам делал к своим книгам, — это маленькие произведения искусства, да и сами книги написаны с безусловным талантом и занимают важное место в итальянской литературе. Когда сыну было десять лет, Винченцо решил, что для него лучше будет продолжить образование в монастыре Санта Мария Валломброза, недалеко от Флоренции, куда семья вернулась в 1574 году.
Галилей прожил в монастыре пять лет, получил базовое гуманитарное образование и решил стать послушником. Отец, не колеблясь, заставил сына выкинуть из головы решение о церковном призвании. Под тем предлогом, что в монастыре Галилею не оказывали необходимого медицинского ухода для лечения глазной инфекции, Винченцо забрал сына во Флоренцию, где тот вновь стал частью семьи и быстро позабыл о религиозном пути.
Видя склонность Галилео к умственной деятельности, Винченцо решил опять отправить его в Пизу — учиться на медицинском факультете местного университета. Он был уверен, что профессия врача позволит сыну никогда не испытывать стесненности в финансах, так знакомой ему самому. В семейной родословной уже был один знаменитый медик, поэтому Винченцо казалось, что он придумал идеальный план.
В 1581 году Галилей поступил на факультет искусств, чтобы защищать диплом по медицине. И хотя он не закончил свое обучение, университетская жизнь оказала огромное влияние на его формирование как человека и ученого. Галилей узнал о теориях и концепциях, которые потом сопровождали его всю жизнь, с которыми он боролся и которыми вдохновлялся: физика Аристотеля, астрономия Птолемея, математические понятия... Впоследствии благодаря полученным обширным знаниям он мог со знанием дела указывать на недостатки этих теорий. Товарищи по факультету быстро прозвали Галилея спорщиком за задиристый характер и склонность к диспутам.
Один случай, произошедший в студенческие годы с Галилеем (хотя источнику этой истории и нельзя доверять полностью), демонстрирует удивительную наблюдательность, которую тот проявлял с детства. Однажды, будучи на мессе в соборе, Галилей заметил, что масляные лампады, которые были подвешены на тросе, спускающемся с крыши, качались на ветру. Галилей понял, что с помощью ритма колебаний можно измерять пульс больных, который указывал на возможное ухудшение состояния здоровья. При помощи веревок разной длины и с различным грузом он подбирал наилучшую комбинацию, которая позволила бы измерять пульс. Галилей продемонстрировал свое изобретение докторам, которые, несмотря на первоначальное недоверие, стали применять его.
Но интеллектуальное событие, оказавшее наибольшее влияние на жизнь исследователя, произошло не в университете, а при дворе великого герцога Тосканского, Франческо I Медичи (1541-1587). Двор периодически переезжал из Флоренции в Пизу, а с ним путешествовал и Остилио Риччи (1540-1603), математик, специалист в геометрии, ученик Никколо Тартальи. В 1583 году Галилею удалось попасть на одну из лекций Риччи, посвященную Евклиду, и можно предположить, что она стала для юноши настоящим открытием. Для Риччи математика была средством решения практических задач, и 19-летний Галилей влюбился в нее настолько, что посвятил ее изучению все свое время и силы, забросив науку Галена. Он решил стать математиком и попросил Риччи быть его учителем. Но сначала необходимо было убедить отца Галилея, и Риччи это удалось. Теперь дорога была открыта, и Галилей мог полностью посвятить себя своему истинному призванию — продолжению традиций Архимеда и Евклида.
Тарталья (Заика, 1499-1557) был одним из самых известных итальянских математиков эпохи Возрождения. Он прославился главным образом благодаря открытию формулы для решения уравнений третьей степени — задачи, поставленной в математической дуэли, которую он с легкостью выиграл. Тарталья впервые перевел на итальянский язык труды Евклида и Архимеда.
В военной сфере известность получило применение им математических методов в вычислении траектории снарядов. Одна из задач, которую он решил в своем трактате «Новая наука» (1537), была следующей: под каким углом надо производить выстрел, чтобы снаряд летел на максимальное расстояние? Такими вопросами стали интересоваться только с XIII века, когда в Европе появился порох. Как указывает ученый в своей работе, считалось, что траектория снаряда делится на три части: прямую линию (когда действует сила от взрыва пороха), дугу (когда начинает действовать сила притяжения) и, наконец, вертикальную линию свободного падения. Только Галилей смог найти правильное решение, доказав, что траектория снарядов на самом деле описывается параболой.
В 1585 году он окончательно бросил учебу в университете Пизы, не закончив курса. Тогда же Галилей начал преподавать математику юношам из состоятельных семей Флоренции и Сиены, а также в монастыре Валломброза, где сам ранее учился.
Два года спустя он побывал в Риме, где познакомился с одним из самых известных математиков того времени, Христофором Клавием (1538-1612). С помощью этих знакомств Галилей пытался сделать себе имя и получить место в каком- нибудь университете. В 1588 году он прочел знаменитую лекцию о местонахождении и размерах ада Данте. Хорошие отношения со двором открыли перед ним карьерные перспективы, и в 1589 году, когда освободилась кафедра математики Пизанского университета, ее отдали Галилею. Он вернулся в статусе профессора в университет, где как студент потерпел неудачу. За небольшое жалованье Галилей работал в Пизе до 1592 года. После смерти отца материальное положение ученого ухудшилось, так как необходимо было обеспечивать мать, братьев и сестер. Жизнь ставила Галилея перед необходимостью новых достижений.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.