Принцип работы двигателя внешнего сгорания - [2]

Шрифт
Интервал

Рабочая часть современного cтирлинга представляет собой замкнутый объем, заполненный газом (рис. 1).


Рис. 1. Принцип работы двигателя Стирлинга

1 – рабочий поршень; 2 – поршень-вытеснитель;

3 – охладитель; 4 – нагреватель; 5 – регенератор;

6 – холодное пространство; 7 – горячее пространство

Верхняя часть объема – горячая, она непрерывно нагревается. Нижняя – холодная, она все время охлаждается проточной водой. В этом объеме находится цилиндр с двумя поршнями: поршнем-вытеснителем 2 и рабочим поршнем 1. Когда рабочий поршень движется вверх, газ в объеме сжимается, при движении поршня вниз – расширяется. Движением вверх – вниз поршня-вытеснителя 2 производится попеременное нагревание и охлаждение газа. Когда поршень-вытеснитель находится в верхнем положении в горячем простран-стве 7, большая часть газа оказывается вытесненной в холодное пространство 6. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз почти до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа – рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.


Какова же роль регенератора в этом процессе? Регенератор 5 расположен между холодным и горячим пространствами. Когда расширившийся газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотную ткань (плотный материал) регенератора и отдает регенератору все содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую полость (часть цилиндра), отбирает это тепло обратно.

Естественно, в реальной машине Стирлинга все выглядит не так просто. Невозможно быстро нагреть газ через сплошную стенку цилиндра, для этого необходима весьма большая поверхность нагрева. Поэтому верхняя часть замкнутого объема представляет собой развитую систему специальных труб, нагреваемых теми или иными тепловыми источниками (например, пламенем форсунки). Для полноты использования теплоты продуктов сгорания холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами – в связи с этим контур сгорания получается довольно сложным. Хо-лодная часть рабочего объема представляет собой тоже непростую систему.


Под рабочим поршнем находится замкнутая буферная полость, наполненная газом под давлением. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме. Поскольку давление в цилиндре повышается плавно, а не взрывом, как в двигателях внутреннего сгорания, вибрации двигателей практически отсутствуют. У cтирлингов нет карбюраторов, систем зажигания, клапанов, свечей. Им не нужны глушители, ведь они работают почти бесшумно. Качественное сгорание топлива в форсунке полностью снимает проблему задымления.

Но если это так, то почему же ни Стирлинг, ни Эриксон не смогли добиться того успеха, которого заслуживали их изобретения?

Прежде всего, ни Стирлинг, ни Эриксон не смогли полностью использо-вать достоинства изобретенных ими регенераторов. Ведь науки о теплопередаче тогда просто не существовало. Произвести расчет регенератора было невозможно, поэтому его размеры и конструкция принимались «на глазок». А КПД двигателя внешнего сгорания весьма сильно зависит от качества работы регенератора. И еще одна, не менее важная, причина заключалась в том, что ни Стирлинг, ни Эриксон, не сообразили выполнить свои машины замкнутыми. У того и у другого рабочим телом служил воздух, который засасывался в двигатель при атмосферном давлении, а это весьма существенно отражалось на размерах машин при сравнительно малых мощностях.

Но самое удивительное и самое важное не в том, что КПД регенеративных cтирлингов и эриксонов становятся равными. Главное в том, что они становятся равными КПД цикла Карно! А отсюда вытекает, что даже при 600–650 °С теоретический КПД двигателей внешнего сгорания составляет 70%!


Поражает и тот факт, насколько гениальную и остроумную машину создал Роберт Стирлинг еще в XIX веке: принципиальная схема и кинематика ее рабочей части целиком перекочевали в современные модели. Инженеры лишь тщательно изучили процессы регенерации тепла и предложили новые материалы для регенератора, доведя его эффективность до 95–97%. С целью увеличения мощности двигателя внешнего сгорания, а также улучшения компактности со-временные специалисты сделали рабочую часть двигателя изолированной от атмосферы и заполнили ее сжатым газом – гелием или водородом. Это позво-лило в настоящее время в России и весьма широко за рубежом создавать двига-тели внешнего сгорания, способные вступить в жесточайшую конкуренцию с двигателями внутреннего сгорания.

Классификация двигателей Стирлинга


Итак, неотъемлемой частью двигателей внешнего сгорания являются две полости с периодически изменяющимися объемами при различных температурных уровнях. Эти полости, как нам уже известно, соединены между собой посредством регенератора и вспомогательных теплообменников. Двигателями Стирлинга принято в настоящее время называть такие двигатели, в которых управление потоком рабочего тела происходит путем изменения объемов.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).


Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.