Принцесса или тигр? - [27]

Шрифт
Интервал

— А сам-то ты знаешь, к какому типу он относился и спал он в тот момент или бодрствовал?

— Ну, конечно, — ответил я. — Как раз я хорошо знаком с этим островитянином и прекрасно знаю, к какому типу он принадлежит и в каком состоянии он в то время находился.

Тогда мой приятель задал мне весьма хитроумный вопрос:

— А скажи, если бы ты мне сообщил, к какому типу он принадлежит, было бы у меня достаточно информации, чтобы узнать, спал он или бодрствовал в тот момент?

Я сказал ему правду (то есть ответил «да» или «нет»), и он тут же сумел решить задачу.

К какому типу относился островитянин и спал он в то время или бодрствовал?


12. Более сложная метаголоволомка. В другой раз я предложил приятелю следующую задачу, связанную с этим островом:

— Одна жительница острова в какой-то момент сочла, будто она принадлежит к ночному типу и спит. Что было с ней на самом деле?

Мой друг тотчас же сообразил, что этих сведений опять недостаточно.

— Предположим, ты сообщил бы мне, к какому типу относилась эта женщина, — сказал мне приятель. — Сумел бы я тогда ответить, спала она в тот момент или бодрствовала?

Я сказал ему правду, но он все равно не смог решить задачу (и этой информации оказалось недостаточно).

Спустя несколько дней я задал эту задачу другому приятелю (не упоминая о своем первом опыте). Этот приятель также понял, что я сообщил ему слишком мало. Тогда он задал мне следующий вопрос:

— Допустим, ты сказал бы мне, спала островитянка в тот момент или бодрствовала. Хватило бы мне информации, чтобы выяснить, к какому типу она принадлежит?

Я снова ответил правду, однако приятель и тут оказался не в состоянии решить задачу (у него тоже не было достаточно информации).

Но зато теперь у вас, читатель, имеется вполне достаточно сведений, чтобы получить ответ! Итак, к какому типу относилась обитательница острова и спала она в то время или бодрствовала?

Эпилог

Предположим, что остров, описанный в этой главе, существовал бы в действительности, а я был бы одним из его обитателей. К какому типу относился бы тогда я — к дневному или ночному? На этот вопрос заведомо можно ответить, основываясь на сказанном мною в данной главе!

Решения

1, 2, 3. Прежде всего заметим, что на острове должны выполняться следующие правила:

Правило 1. Во время бодрствования любой житель острова считает, что он принадлежит к дневному типу.

Правило 2. Во время сна любой островитянин полагает, что он принадлежит к ночному типу.

Правило 3. Жители дневного типа всегда уверены, что они бодрствуют.

Правило 4. Жители ночного типа всегда уверены, что они спят.

Для доказательства правила 1 предположим, что X — житель острова, который в данный момент не спит. Если X принадлежит к дневному типу, тогда он одновременно принадлежит к дневному типу и бодрствует; значит, его суждения в этот момент правильны, и он знает, что относится к дневному типу. С другой стороны, предположим, что X принадлежит к ночному типу. Тогда, поскольку он относится к ночному типу и в данный момент бодрствует, его суждения неверны; поэтому он ошибочно полагает, будто он относится к дневному типу. Итак, суммируя, имеем: когда X бодрствует, то если он принадлежит к дневному типу, он (правильно) считает, что относится к дневному типу; если же он относится к ночному типу, то он (ошибочно) полагает, будто также принадлежит к дневному типу.

Правило 2 доказывается аналогично: когда X спит, то если этот островитянин принадлежит к ночному типу, он (правильно) считает, что он относится к ночному типу, а если он принадлежит к дневному типу, то он (ошибочно) полагает, будто также относится к ночному типу.

Для доказательства правила 3 предположим, что обитатель острова X принадлежит к дневному типу. Пока он не спит, его суждения правильны и, следовательно, он твердо убежден, что бодрствует. Но во время сна его суждения неверны, и, следовательно, тогда он ошибочно полагает, будто он бодрствует. Итак, во время бодрствования он (правильно) считает, что бодрствует, а во время сна он (ошибочно) полагает, будто также бодрствует.

Правило 4 доказывается аналогично правилу 3, и мы предоставляем это сделать самому читателю.

Обращаясь теперь к решению задачи 1, заметим, что в данном случае невозможно определить, правильно ли суждение островитянина. Однако ясно, что в указанный момент он должен был бодрствовать, поскольку если бы островитянин спал, то он был бы убежден, что принадлежит не к дневному, а к ночному типу (согласно правилу 2).

Что касается задачи 2, то здесь также нельзя определить, было ли суждение островитянина верным, однако ясно, что он должен принадлежать к ночному типу, поскольку если бы это было не так, то данный житель острова был бы уверен, что он бодрствует, а не спит (согласно правилу 3).

В отношении же задачи 3 ответом па вопрос «а» является «нет» (потому что в соответствии с правилами 1 и 2 мнение островитянина но поводу того, принадлежит он к дневному или ночному типу, изменяется в зависимости от его состояния (то есть, от того, бодрствует он или же спит), а ответом на вопрос «б» является «да» (в соответствии с правилами 3 и 4).


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.