Принцесса или тигр? - [22]

Шрифт
Интервал


14. К счастью, один островитянин вздумал обратиться ко мне с вопросом, из которого я сразу понял, что волшебник на острове должен обнаружиться непременно.

Не можете ли Вы придумать такой вопрос?


Тут читатель, возможно, призадумается, как это до меня могли дойти слухи об островном волшебнике или вообще о чем-нибудь на острове, если жители острова не высказывают никаких утверждений, а лишь задают вопросы. Если предположить, что читатель еще не догадался, как это происходит, то решение данной, задачи как раз и подскажет нам, каким же образом островитяне могут обмениваться информацией почти так же свободно, как и остальная часть человечества — хотя, быть может, и несколько более неуклюжим способом.


Можете себе представить, как я обрадовался, узнав, что на острове в самом деле проживает волшебник; к тому же мне удалось выяснить точно, что волшебник на острове только один. Но я не имел ни малейшего представления, кто он. Далее я разведал, что приезжего, который сумел бы правильно назвать его имя, ожидает большая награда. Единственная загвоздка была в том, что гостю, который в этой ситуации ошибался, немедленно отрубали голову.

Итак, на следующее утро я поднялся очень рано и пошел бродить по острову в надежде, что островитяне зададут мне достаточно вопросов, чтобы я смог с полной уверенностью сказать, кто же состоит тут волшебником.

И вот что случилось потом.


15. Первого островитянина, которого я встретил, звали Артур Гуд. Он спросил меня:

— Я — волшебник?

Достаточно ли у меня информации, чтобы выяснить, кто же является волшебником?


16. Следующего островитянина звали Бернард Грин.

Он спросил меня:

— Принадлежу ли я к людям того типа, которые могли бы спросить вас, не волшебник ли я?

Достаточно ли было мне этой информации?


17. Очередной попавшийся мне островитянин, Чарлз Мэнсфилд, спросил меня:

— Принадлежу ли я к людям того типа, которые могли бы спросить, относится ли волшебник к людям того типа, которые могли бы спросить, волшебник ли он?

Достаточно ли мне этой информации?


18. Еще одного островитянина звали Дэниел Мотт. Он задал мне такой вопрос:

— Принадлежит ли волшебник к типу B?

Достаточно ли мне этой информации?


19. Последнего островитянина звали Эдвин Друд. Он спросил:

— Относимся ли мы с волшебником к людям одного типа?

Наконец-то! Теперь у меня было достаточно сведений, чтобы разрешить загадку.

Так кто же волшебник?

Призовая задача

Ну-ка, обладаете ли вы способностями детектива? Вспомним пациента по имени Томас, который приезжал на остров. Находился ли он все-таки в здравом уме или был безумен?

Решения

1. Ни один житель этого острова не может задать вам такой вопрос. Если островитянин, относящийся к типу A, спрашивает: «Принадлежу ли я к типу B?» — правильным ответом на этот вопрос будет «нет» (так как он в самом деле не принадлежит к типу B). Но человек, относящийся к типу A, не может задать вопрос, правильным ответом на который является «нет»; следовательно, ни один островитянин типа А не может задать такой вопрос. Если же такой вопрос задает островитянин типа В, то правильным ответом на него будет «да». Но человек типа В не может задавать вопросы, на которые следует отвечать «да», и следовательно, островитянин типа В тоже никак не может задать подобный вопрос.


2. Тут мы не можем прийти ни к какому выводу. Действительно, любой житель острова может спросить, принадлежит ли он к типу A, поскольку сам он при этом может относиться как к типу A, так и к типу B. Если он относится к типу A, тогда правильным ответом на его вопрос: «Отношусь ли я к типу A?» — является «да», а человек типа А всегда может задать любой вопрос, правильным ответом на который будет «да». С другой стороны, если островитянин принадлежит к типу B, тогда правильным ответом на поставленный вопрос является «нет», а любой островитянин типа В всегда может задать вопрос, правильным ответом на который будет «нет».


3. Прежде всего мы должны выяснить, к какому типу относится Итан. Предположим, что он принадлежит к типу A. Тогда правильным ответом на его вопрос должно быть «да» (поскольку «да» является правильным ответом на вопросы, задаваемые островитянами типа А), а это означало бы, что Итан и Вайолет оба принадлежат к типу B. Тем самым Итан относился бы к типу B, и мы пришли бы к противоречию. Следовательно, Итан не может принадлежать к типу A, а значит, должен относиться к типу B. Далее, поскольку он принадлежит к типу B, правильным ответом на его вопрос будет «нет», и, следовательно, они с Вайолет принадлежат к разным типам. Поэтому Вайолет должна относиться к типу A.


4. Допустим, что Артур принадлежит к типу B. Тогда, действительно, по крайней мере один из братьев относился бы к типу B, а это потребовало бы в качестве правильного ответа «да», что в свою очередь означало бы, что Артур принадлежит к типу A. Таким образом, мы приходим к противоречию, и, следовательно, Артур не может принадлежать к типу B. Стало быть, он относится к типу A. Отсюда следует, что правильным ответом на его вопрос является «да», а это означает, что по крайней мере один из братьев принадлежит к типу B. Так как Артур не принадлежит к типу B, то это должен быть Роберт. Итак, Артур относится к типу A, а Роберт — к типу B.


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.