Приглашение в теорию чисел - [8]
Как мы видели, решето Эратосфена может быть использовано для построения таблиц простых чисел и таблиц делителей. Однако оно может быть использовано и для теоретических исследований. Многие важные результаты в современной теории чисел были получены методом решета. Приведем результат, известный еще Евклиду:
Существует бесконечное число простых чисел.
Доказательство. Предположим, что существует только k простых чисел:
2, 3, 5…, р>k.
Тогда в решете не оказалось бы неподчёркнутых чисел, больших, чем р>k. Но это невозможно, так как произведение этих простых чисел
р = 2 • 3 • 5 • … • р>k
будет отсеиваться k раз, по разу для каждого простого числа, поэтому следующее число р + 1 не может быть подчеркнуто ни для одного из них.
Система задач 2.4.
1. Составьте таблицы простых чисел для каждой из сотен: 1—100, 101–200, … 901—1000.
2. Попытайтесь определить количество простых чисел в диапазоне 10001—10100.
ГЛАВА 3
ДЕЛИТЕЛИ ЧИСЕЛ
§ 1. Основная теорема о разложении на множители
Любое составное число с может быть записано в виде произведения с = ab, причем ни один из делителей не равен 1 и каждый из них меньше, чем с; например,
72 = 8 • 9, 150 = 10 • 15.
При разложении числа с на множители один из них, и даже оба (а и b) могут оказаться составными. Если а — составное, то разложение на множители можно продолжить:
а = a>1 • a>2, с = a>1 • a>2 • b.
Примерами этого могут служить рассмотренные выше числа
72 = 2 • 4 • 9, 150 = 2 • 5 • 15.
Этот процесс разложения на множители можно продолжить до тех пор, пока он не закончится; это должно произойти, так как делители становятся все меньше и меньше, но не могут стать единицей. Когда ни один из делителей нельзя уже будет разложить на множители, то все делители будут простыми числами.
Таким образом мы показали, что
Каждое целое число, большее 1, является простым числом или произведением простых чисел.
Последовательное разложение числа на множители может быть выполнено многими способами. При этом можно использовать таблицу делителей. Сначала найдем наименьшее простое число р>1, делящее число с, так что с = р>1с>1. Если с>1 — составное число, то по таблице делителей найдем наименьшее простое число р>2, делящее с>1, так что
c>1 = р>2 • с>2, c = p>1 • p>2 • с>2.
Затем найдем наименьший простой делитель числа с>2 и т. д.
Но главное здесь то, что независимо от способа разложения числа на простые множители результат всегда будет одним и тем же, различаясь лишь порядком их записи, т. е. любые два разложения числа на простые множители содержат одни и те же простые числа; при этом каждое простое число содержится одинаковое число раз в обоих разложениях.
Этот результат мы можем кратко выразить следующим образом:
разложение числа на простые множители единственно.
Возможно, что вы так часто слышали об этой так называемой «основной теореме арифметики» и пользовались ею, что она представляется вам очевидной, но это совсем не так. Эта теорема может быть доказана несколькими различными способами, однако ни один из них не тривиален. Здесь мы приведём доказательство, используя способ «от противного», который часто называют его латинским названием reductio ad absurdum (приведением к абсурду). Этот способ заключается в следующем: предположив ложность теоремы, которую нужно доказать, показывают, что это предположение приводит к противоречию.
Доказательство. Предположим, что наша теорема о единственности разложения на множители неверна. Тогда должны существовать числа, имеющие по крайней мере два различных разложения на простые множители. Выберем из них наименьшее и обозначим его через с>0. Для небольших чисел, скажем, меньших 10, истинность теоремы можно установить прямой проверкой. Число с>0 имеет наименьший простой множитель р>0, и мы можем записать:
c>0 = p>0 d>0.
Так как d>0 < c>0, то число d>0 единственным образом раскладывается на простые множители. Отсюда следует, что разложение числа c>0 на простые множители, содержащее число р>0, единственно.
А так как, по предположению, имеется по крайней мере два разложения числа c>0 на простые множители, то должно быть разложение, не содержащее число р>0. Наименьшее простое число в этом разложении мы обозначим через р>1 и запишем
c>0 = p>1d>1. (3.1.1)
Так как p>1 > p>0, то d>1 < d>0 и, следовательно, p>0 d>1 < c>0. Рассмотрим число
c>0' = c>0 — p>0d>1 = (p>1 - p>0) • d>1. (3.1.2)
Так как оно меньше, чем число c>0, то оно должно раскладываться на простые множители единственным способом; при этом простые множители числа c>0 состоят из простых множителей чисел p>1 - p>0 и d>1. Так как число c>0 делится на p>0, то из выражения (3.1.2) следует, что число c>0' также делится на p>0. Следовательно, p>0 должно быть делителем либо числа d>1, либо p>1 - p>0. Но любой простой делитель числа d>1 больше, чем p>0, так как p>1 — наименьшее простое число в разложении (3.1.1). Таким образом, остается единственная возможность:
Впервые книга "Машины создания" была издана в твёрдой обложке издательством Энкор Букс (Anchor Books) в 1986 году, а в мягкой обложке – в 1987. Интернет-версия переиздана и адаптирована Расселом Вайтейкером с разрешения владельца авторских прав. Подлинник на английском языке находится на сайте Института предвиденияпо адресу: http://www.foresight.org/EOC/.
Невероятные случаи происходят с нами постоянно, их нужно только собрать и разложить, что называется, по полочкам. Другое дело — верить или не верить в эти истории. Какие-то из них мы принимаем безоговорочно, о других можем сказать: «Этого не может быть, потому что...» Конец фразы известен. А есть и такие истории, которые, когда с ними познакомишься, вызывают только вопросы: а дальше что? Где продолжение? Необыкновенные истории реальны, реальны настолько, что мы даже себе представить не можем — вот увидите.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Сборник логических задач автора известных сказок «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» Льюиса Кэрролла в яркой и занимательной игровой форме знакомит читателя с оригинальным графическим методом решения силлогизмов и соритов.В приложение включены некоторые игры, фокусы и головоломки Льюиса Кэрролла и его письма к детям.Для школьников 8—10-х классов и всех любителей занимательных задач.