Приглашение в теорию чисел - [5]

Шрифт
Интервал

. Среди первых 100 чисел простыми являются следующие 25 чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Все остальные числа, кроме 1, являются составными. Мы можем сформулировать следующее утверждение:

Теорема 2.1.1. Любое целое число с> 1 является, либо простым, либо имеет простой множитель.

Доказательство. Если с не является простым, числом, то у него есть наименьший нетривиальный множитель р. Тогда р — простое число, так как если бы р — было составным, то число с имело бы ещё меньший множитель.

Теперь мы подошли к нашей первой важной задаче в теории чисел: как определить, является ли произвольное число простым или нет, и в случае, если оно составное, то как найти какой-либо его нетривиальный делитель?

Первое, что может прийти в голову, — это попытаться разделить данное число с на все числа, меньшие его. Но надо признать, что этот способ мало удовлетворителен. Согласно теореме 2.1.1 достаточно делить на все простые числа, меньшие √с. Но мы можем значительно упростить задачу, заметив, что при разложении на множители (2.1.1) оба множителя а и b не могут быть больше, чем c, так как в противном случае мы получили бы

ab > √с • с,

что невозможно. Таким образом, чтобы узнать, имеет ли число с делитель, достаточно проверить, делится ли число с на простые числа, не превосходящие — √с.

Пример 1. Если с = 91, то √с = 9….; проверив простые числа 2, 3, 5, 7, находим, что 91 =7 13.

Пример 2. Если с =1973, то находим, что √с = 44…. Так как ни одно из простых чисел до 43 не делит с, то это число является простым.

Очевидно, что для больших чисел этот метод может быть очень трудоемким. Однако здесь, как и при многих других вычислениях в теории чисел, можно использовать современные методы. Довольно просто запрограммировать на ЭВМ деление данного числа с на все целые числа до √с и печатание тех из них, которые не имеют остатка, т. е. тех, которые делят с.

Другим очень простым методом является применение таблиц простых чисел, т. е. использование простых чисел уже найденных другими. За последние 200 лет было составлено и издано много таблиц простых чисел. Наиболее обширной из них является таблица Д. X. Лемера, содержащая все простые числа до 10 000 000. Наша таблица 1 содержит все простые числа до 1000.

Таблица 1

Простые числа среди первой тысячи чисел

Некоторые энтузиасты-вычислители уже подготовили таблицы простых чисел, превосходящих 10 000 000. Но, по-видимому, не имеет большого смысла идти на значительные затраты и усилия, чтобы опубликовать эти таблицы. Лишь в очень редких случаях математику, даже специалисту в теории чисел, приходится решать вопрос о том, является ли какое-то большое число простым. Кроме того, большие числа, о которых математик хочет узнать, являются они составными или простыми, не берутся им произвольно. Числа, которые он хочет исследовать, обычно появляются в специальных математических задачах, и, таким образом, эти числа имеют очень специфическую форму.


Система задач 2.1.

1. Какие из следующих чисел являются простыми: а) год вашего рождения; б) текущий год; в) номер вашего дома.

2. Найдите простое число, следующее за простым числом 1973.

3. Заметим, что числа от 90 до 96 включительно являются семью последовательными составными числами; найдите девять последовательных составных чисел.

§ 2. Простые числа Мерсенна

В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких очевидных делителей, как 2, 3, 5, 7, и проверить, являются ли они простыми числами. Этот способ, как мы вскоре убедимся, не очень эффективен. Теперь эта погоня утихла, она идет только в одном направлении, оказавшемся удачным.

Простые числа Мерсенна являются простыми числами специального вида

М = 2>p - 1, (2.2.1)

где р — другое простое число. Эти числа вошли в математику давно, они появляются еще в евклидовых размышлениях о совершенных числах, которые мы рассмотрим позже. Свое название они получили в честь французского монаха Мерена Мерсенна (1588–1648), который много занимался проблемой совершенных чисел.

Если начать вычислять числа (2.2.1) для различных простых чисел р, то видно, что не все они оказываются простыми. Например,

М>2 = 2>2 — 1 = 3 = простое,

М>3 = 2>3 — 1 = 7 = простое,

М>5 = 2>5 — 1 = 31 = простое,

М>7 = 2>7 — 1 = 127 = простое,

М>11 = 2>11 — 1 = 2047 = 23 89.

Общий способ нахождения больших простых чисел Мерсенна состоит в проверке всех чисел М>p для различных простых чисел р.

Эти числа очень быстро увеличиваются и столь же быстро увеличиваются затраты труда на их нахождение. То, что с этой работой все-таки можно справиться уже для довольно больших чисел, объясняется существованием эффективных способов выяснения простоты для чисел такого вида.

В исследовании чисел Мерсенна можно выделить раннюю стадию, достигшую своей кульминации в 1750 году, когда Леонард Эйлер[5] установил, что число М>31 является простым. К этому времени было найдено восемь простых чисел Мерсенна, соответствующих значениям


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Многоликий солитон

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.Для школьников старших классов, студентов, преподавателей.


История свечи

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Приключения Мистера Томпкинса

В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.