Посвящение в радиоэлектронику - [18]
А с наступлением космической эры развиваются и совершенствуются спутниковые системы связи, для которых уже не существует больших расстояний на поверхности Земли. Как же изменился телеграф в современных условиях? Теперь его даже трудно назвать телеграфом, в ходу новое название цифровые системы передачи сообщений. Их интенсивное развитие связано с успехами общей теории связи, освоением новых диапазонов частот (СВЧ, оптического), совершенствованием вычислительной техники, успехами в освоении космоса. Цифровые системы связи проектируются и разрабатываются на основе последних достижений микроэлектроники. Первоначально ряд телеграфных каналов объединяется в группу, размещаемую в полосе частот стандартного телефонного канала. Скорость передачи в первичной группе составляет от 200 до 9600 бит/с. Групповые сигналы объединяются в более «мощные» стволы со скоростью передачи до 10 Мбит/с. А на магистральных линиях связи скорость передачи достигает 140 Мбит/с. Для формирования сигналов цифровых систем связи применяют весьма сложную аппаратуру, например ИКМ-1920, использующую импульсно-кодовую модуляцию и специальные помехоустойчивые виды кодирования. Все чаще по цифровым каналам связи передается и аналоговая информация (телефонные переговоры, радиовещательные программы), преобразованная в цифровую форму.
В сложных и разветвленных сетях связи, пропускающих огромное количество цифровой информации, надо обеспечить управление, контроль правильности передачи, коммутацию каналов, выравнивание скоростей передачи, контроль исправности линий, да мало ли что еще надо для их обслуживания! И как везде, где сложную и трудоемкую работу надо выполнять быстро и безошибочно, на помощь человеку приходит электронно-вычислительная машина (ЭВМ). Да, да, сетями связи теперь может управлять ЭВМ. Она и переключит каналы, и накопит переданную информацию, и сделает многое-многое другое.
Итак, мы стоим перед лицом новой современной индустрии. Она не занимается ни выплавкой металла, ни изготовлением продукции, ни добычей полезных ископаемых, не вырабатывает в промышленных количествах энергию и не передает ее на огромные расстояния через целые области, регионы и страны. Эта индустрия занимается вопросами получения, хранения, обработки и передачи информации. Без нее невозможно правильное, экономное и эффективное функционирование других — добывающих, производящих и обрабатывающих отраслей индустрии, ибо она помогает людям думать и решать сложные проблемы, обеспечивает обмен и накопление знаний, опыта.
Практически вся индустрия информации строится на базе достижений радиоэлектроники. Вот почему значение последней так велико и, как представляется, будет расти дальше. Но чтобы познакомиться с этой интереснейшей и всеобъемлющей, вездесущей и удивительной наукой радиоэлектроникой, — вам придется прочесть следующие главы.
3. ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ
Вопреки названию в этой главе вас ожидает рассказ о «несущих» колебаниях, о маятниках старинных часов, разноцветных солнечных зайчиках и радуге, ксиллофонах и кварцевых кристаллах, взаимовыручке друзей и отравляющем жизнь гвозде в ботинке, морской болезни, грузике на веревочке, а также о том, как часто простое устройство позволяет сделать очень важные выводы.
Давайте придумаем сигнал, не несущий никакой информации. Электрический сигнал, конечно. Вот два провода, источник тока и ключ. Если ключ не нажимать, то нет и сигнала, а значит и никакой информации. Другой случай: ключ нажат постоянно. Между проводниками линии действует напряжение источника. Оно не изменяется, следовательно, и информации никакой не передается.
Снятие напряжения размыканием ключа уже сигнал, смена состояний от «1» к «0». Этот случай не подходит. Значит, либо не изменяющееся состояние «0» (напряжения в линии нет), либо не изменяющееся состояние «1» (напряжение есть) информации не несут. Рассмотренные два случая тривиальны. Есть еще случай, когда напряжение в линии изменяется, а информации все равно не передается. Не догадываетесь пока? Напряжение должно изменяться периодически, по наперед заданному закону. Тогда наблюдатель на конце линии, противоположном источнику, сможет заранее предсказать все изменения сигнала. Информация о сигнале у него уже есть, и сам сигнал не приносит ему никакой новой информации. Таким образом, чтобы сигнал переносил информацию, в нем должен быть элемент случайности, неопределенности для получателя. Регулярные, полностью определенные и наперед заданные сигналы информации не несут.
На рисунке показаны примеры таких регулярных периодических сигналов. Первый сигнал — синусоидальный. Говоря другими словами, изменения напряжения подчиняются синусоидальному закону.
Примеры периодических сигналов.
Другой сигнал-тоже периодический, но прямоугольной формы. Он описывается так называемой функцией Уолша, принимающей только два значения: либо 0 и 1, либо — 1 и + 1. Третий пример — последовательность импульсов одинаковой формы, следующих через равные промежутки времени. Описанные сигналы могут быть переносчиками информации только в том случае, если их параметры изменяются в соответствии с передаваемым сигналом. Например, если в соответствии со знаками телеграфной азбуки включается и выключается переменное синусоидальное напряжение. Кстати, именно так устроены и любой тренажер для изучения телеграфной азбуки на слух, и детская игра «телеграф». Вот их упрощенная схема.
«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью.
К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.
Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.
Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.