Пособие кислотчику сульфитно-целлюлозного производства - [6]
Оптимальная температура газа для сухой электрической очистки 450–500 °C, для мокрой 35–40 °C.
Ожидаемый эффект очистки в сухом электрофильтре может быть определен по формуле
η = I — K>L,
I = L/Sω>r - удельное время пребывания газа в электрофильтре (параметр, характеризующий режим работы электрофильтра), сек/м;
ω>r - скорость газа в активной зоне электрофильтра (0,5 м/сек);
L = nl — суммарная активная длина полей l электрофильтра по ходу газа, м;
n — число полей;
S — Расстояние между осадительными и коронирующими электродами (для электрофильтров типа ОГ S=0,13 м);
K — коэффициент, характеризующий скорость осаждения частиц пыли в электрическом поле.
Для электрофильтров типа ОГ при работе на колчеданной пыли К=0,95.
Охлаждение печного газа до температуры 35–40° производится в две стадии. Сначала газ быстро охлаждают до температуры 450–500°, в случае работы на колчедане, и до 300 °C, в случае работы на сере, чтобы уменьшить возможность образования SO>3.
Вторая стадия — охлаждение газа с температурой 300–500° до температуры 35–40°.
Не следует охлаждать газ в первой стадии до температуры ниже 300 °C, так как в этом случае происходит конденсация серной кислоты, которая может подвергнуть разрушению оборудование.
Более интенсивно процесс охлаждения газа за счет непосредственного контакта газа с жидкостью проходит в барботажных и пенных аппаратах с перфорированной решеткой. Кроме того, охлаждение газа может происходить и через разделяющую стенку. Наиболее старым способом такого рода охлаждения являются свинцовые погружные холодильники, в которых охлаждающей средой служит вода. Для охлаждения используются и трубчатые холодильники, в которых охлаждающим элементом является атмосферный воздух.
Поглощение сернистого газа и получение сырой кислоты
До недавнего времени для варки сульфитной целлюлозы применяли кислоту только на кальциевом основании. Существовало два способа получения сырой кислоты: турменный и известково-молочный. В настоящее время все большее значение приобретают другие виды основания — магниевое, натриевое, аммониевое, которые применяются в чистом виде или в смеси с кальциевым основанием В основе приготовления сырой кислоты любого состава и с любым видом основания лежит процесс абсорбции.
Абсорбция — это процесс поглощения газа за счет проникновения его в массу жидкости, в результате чего происходит образование раствора определенного состава.
При соприкосновении газа с жидкостью часть молекул газа растворяется в ней, а затем частично выделяется обратно в газовую фазу, При этом через некоторое время количество молекул, переходящих в жидкость и возвращающихся в газовую фазу, становится одинаковым. Такое положение называется состоянием равновесия. Содержанию растворенного газа в жидкости при данной температуре соответствует определенное содержание его в газовой фазе, которое называется парциальным давлением.
Парциальное давление газа над жидкостью выражается обычно в мм рт. ст. или в ата и составляет часть общего давления над данным раствором. Следовательно, на процесс абсорбции газа жидкостью влияют два основных фактора — парциальное давление и температура, меняя которые можно регулировать состав раствора.
Таким образом, если печной газ с определенным содержанием сернистого ангидрида в нем С% и под некоторым давлением p мм рт. ст. вступает в соприкосновение с водой, имеющей температуру t°С, растворимость газа в воде X определяется по формуле Гумма, как
X = 0.03Cp / (100x1.0363>t) %.
Из приведенной формулы исходят следующие основные выводы:
1. С повышением давления растворимость SO>2 в воде повышается. Это объясняется тем, что с повышением общего давления растет и парциальное давление, составляющее часть общего, а с повышением парциального давления газа над его раствором состояние равновесия смещается в сторону увеличения количества поглощенного газа.
2. Чем выше концентрация SO>2 в поступающем газе (т. е. выше парциальное давление), тем большее его количество может перейти в раствор.
3. С повышением температуры раствора количество SO>2, способного раствориться, понижается.
Процесс поглощения сернистого газа водой сопровождается химической реакцией образования сернистой кислоты
SO>2 + H>2O ↔ H>2SO>3.
Количество сернистой кислоты при 10° составляет 80 % от всего растворенного SO>2. С повышением температуры равновесие реакции смещается влево и при 90° сернистой кислоты содержится всего 10 %.
Максимальная концентрация SO>2 в воде при атмосферном давлении 22,8 %. Повышая давление, можно довести концентрацию до 24–25 % SO>2. При дальнейшем повышении содержания SO>2 раствор распределяется на два слоя: нижний — жидкий 98,6 % SO; и верхний раствор, содержащий 24–25 % SO>2. Повысить содержание SO>2 до 29,2 % можно охлаждением раствора до -3°. При температуре -3,5° раствор замерзает. Однако растворы указанных выше концентраций практического применения не имеют. Обычно концентрация водного раствора SO>2, используемого, например, на второй ступени варки ацетатной целлюлозы, не превышает 7–10 %.
Варочная кислота для кислой сульфитной варки состоит из бисульфитного раствора и свободного SO
Издание представляет собой сборник рассказов о химических элементах, т. е. о видах атомов, из которых построены звезды и Солнце, Луна и планеты, земля, вода, воздух, растения, животные и мы сами. Это рассказы о тех химических элементах, которые занимают определенное место в периодической системе, созданной великим химиком Дмитрием Ивановичем Менделеевым. В этой естественной системе место, занимаемое тем или иным элементом, позволяет определить не только его химические и физические свойства, но также состав и свойства соединений, образуемых им с другими элементами.
В жизни насекомых чрезвычайно большую роль играют запахи. Общаясь между собой при помощи пахучих молекул-феромонов, шестиногие «рассказывают» об источнике пищи, образуют брачные пары, охраняют свое жилище, метят «владения». О том, как ученые разгадали тайну химического языка насекомых, синтезировали феромоны в лабораториях и разработали способы их практического применения, узнает читатель этой книги.Ее с увлечением прочтут те, кто интересуется прикладной энтомологией и вопросами охраны окружающей среды.
Корзина величиной с океан и стеклянное ружье; огненный шелк и вкусный газ; надувной дом и огурцы, растущие в воздухе; котлеты из микробов и нитки крепче стали; отопление морозом и химическая бомба, спрятанная в луковице… Чудеса эти создает современная химия в самых разнообразных областях науки и жизни. О роли химии в технике, сельском хозяйстве, быту, промышленности и рассказывается в этой книге. Для среднего и старшего возраста.
В книге рассмотрена широкая гамма широко представленных на рынке автохимии присадок и добавок к различным автомобильным технологическим средам: смазочным материалам, топливу, охлаждающим и стеклоочищающим жидкостям.В доступной форме приведено описание характеристик и особенностей свойств различных препаратов, даны рекомендации по их применению, в том числе для безразборного технического сервиса систем смазки и охлаждения, а также топливной системы автомобильного двигателя. Представлены препараты для омывающих жидкостей, специальные добавки для консистентных смазок и жидкостей для автоматических коробок передач.Особое внимание уделено применению очистителей топливных систем, антигелей, цетан- и октан-корректоров, ремонтно-восстановительных препаратов и технологий, в т. ч., реметаллизантов, геомодификаторов трения, кондиционеров поверхности, слоистых и нанодобавок, находящих все более широкое применение и позволяющих значительно повысить надежность автомобильной и другой техники.
Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.
В книге на примерах распространенных отравлений рассматриваются сущность и особенности взаимодействия реактивных структур организма, ядов и противоядий. Освещаются пути и характер научного поиска токсикологов, химиков, биохимиков, фармакологов в раскрытии молекулярных механизмов токсических процессов. В связи с расширяющимся внедрением химических веществ в различные сферы человеческой деятельности особое место в книге занимает описание достижений науки и практики в создании эффективных антидотов, характеризуются возможности и перспективы их применения.