Пособие кислотчику сульфитно-целлюлозного производства - [19]
Рис. 20. Приспособления для орошения:
а — колокольный затвор с гидравлическим колпачком: 1 — колпачок; 2 — свинцовый патрубок; 3 — трубка;
б — брызгало с креплением: 1 — кольцевая труба; 2 — крюки; 3 — отверстия для воды;
в — форсунка с завихрителем: 1 — шпиндель с двухходовой прямоугольной нарезкой; 2 — корпус;
г — форсунка с отражательным конусом: 1 — конус; 2 — сопло;
д — форсунка с отражателем: 1 — сопло; 2 — отражатель.
Над колосниковыми решетками устраивают специальные люки, через которые очищают решетки от мелочи, а затем удаляют и нижний слой камня для того, чтобы вызвать смещение верхних слоев камня и обновить его реакционную поверхность.
Раньше турмы сооружали из деревянной клепки и защищали от ударов камня обшивкой из досок или деревянными шашками. Сборники для кислоты облицовывали свинцом. Современные турмы выполняются из железобетона и защищаются облицовкой из кислотоупорных плиток и кирпича.
Турмы — это громадные сооружения диаметром до 3,8 м, высотой около 50 м, которые дополнительно утяжеляются известковым камнем. В связи с этим к фундаментам турм предъявляются высокие требования — необходимо тщательно следить за их состоянием, не допуская разъедания кислотой.
Производительность турмы характеризуется количеством кислоты (м>3), получаемой в сутки с 1 м>3 сечения. Расчетное сечение определяется по среднему диаметру турмы. Необходимый диаметр турмы находят по формуле
где:
D — диаметр башни, м;
Q — средняя производительность турмы м>3/сутки;
k — количество орошающей жидкости, м>3/сутки, на 1 м>2/сутки сечения турмы.
Для однобашенной установки принимают съем с 1 м>2 сечениятурмы 100–150 м>3/сутки. Диаметр турмы должен выбираться с таким расчетом, чтобы скорость прохождения газа соответствовала необходимой продолжительности реакции. Эта величина составляет 0,25–0,5 м>3 в секунду на 1 м>2 сечения турмы.
Высоту насадки из известкового камня определяют исходя из крепости печного газа, допустимых потерь с непоглощенными газами и температуры орошающей воды. Все эти величины увязаны между собой через формулу, описывающую эффективность работы турмы на основе понятия высоты половинного поглощения
где:
С>1 — концентрация SO>2 в уходящих газах, %;
С — концентрация SO>2 в печных газах, %;
Н — высота столба известняка, м;
h — высота половинного поглощения, м.
Под высотой половинного поглощения понимают высоту, на которой поглотится половина всего SO>2, поступившего в башню. Высота половинного поглощения зависит от температуры.
Температура вода, °С …………………………… 5…10…12…15…18…20
Высота половинного поглощения, м …… 1,55…2,8…3,25…4,05…4,85…5,50
Считается, что для нормальной работы турмы отношения H/h не должно быть ниже 7.
При определении необходимое высоты насадки учитывается, что в процессе работы общая высота столба известняка падает, уменьшается соответственно и отношение H/h, следовательно, ухудшается эффективность работы турмы. Исходя из этого принимается запас высоты насадки и выбирается продолжительность работы турмы от загрузки до загрузки.
Башня Гиллера. В свое время башня Гиллера была единственным аппаратом, применявшимся в СССР для приготовления кислоты по известково-молочному способу. Башня строится из дерева и имеет прямоугольное сечение с размером в плане 2,0 x 2,2 м. По высоте она делится на 14 этажей.
Известковое молоко с концентрацией 1 % CaO подается на 14-й этаж и последовательно проходит все этажи, перетекая через переливные трубы. Газ подается в башню снизу, двигаясь противотоком по отношению к известковому молоку. Газ, имеющий большую скорость, как бы проталкивается через известковое молоко, в результате чего происходит бурление и интенсивное перемешивание газа и жидкости. На каждом из рабочих этажей расположены специальные перегородки, которые делят этаж на четыре секции и имеют в нижней части отверстия. Газ может проникнуть из одной секи и и в другую только через эти отверстия, которые погружены в известковое молоко, и таким образом он дополнительно перемешивается с жидкостью.
Готовая кислота собирается в сборник кислоты в нижней части башни; газ отводится с последнего этажа турбогазодувкой Основное затруднение, с которым приходится сталкиваться при работе, — частые засорения башни. Существенным недостатком башни является ее большое сопротивление (1800–2000 мм вод. ст.) движению газа.
Производительность башни 650–700 м>3 кислоты в сутки.
Барботажная колонна. Производительность барботажной колонны в 6 раз больше, чем у башни Гиллера того же объема. Этот аппарат может применяться для получения кислоты со всеми видами основания, т. е. кальциевым, магниевым, натриевым и аммониевым.
Барботажная колонна (рис. 21) состоит из отдельных цилиндрических секций (царг), соединяющихся на фланцах в единую башню высотой 8–9 м. В каждой царге через 250 мм устанавливаются тарелки с некоторым уклоном (угол 3–5°). Для производства сульфитной кислоты применяются тарелки провального типа с отверстиями 4–6 мм и шагом 11–12 мм. В корпусе колонны предусматриваются специальные люки для осмотра и чистки тарелок.
Газ подводится снизу и проходит через отверстия в тарелках навстречу стекающей жидкости. В результате высокой скорости в отверстиях газ создает на тарелке барботажный слой, где газ и жидкость интенсивно перемешиваются. Жидкость подается в колонну сверху. Готовая кислота собирается в нижней части. Установленные на некоторых наших заводах барботажные колонны имеют диаметр 1,5 1 высоту 10 м и оборудованы 20 тарелками с отверстиями 6 мм к шагом 12 мм. Корпус колонны и сами тарелки изготовляются из кислотоупорной стали Х17Н13М2Т. Производительность такой колонны по кислоте 120 м
Вопреки сложившейся традиции излагать историю науки как историю идей и теорий автор из ГДР В. Штрубе дает оригинальную трактовку развития науки: он стремится показать, как открытия, изобретения, накопление новых знаний и становление научной химии способствовали развитию общества. В данном томе рассматривается развитие химии в период от промышленной революции до начала XX в. Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты. В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов.
Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания.
Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.
Химия завтра… О какой химии пойдет речь?О той, которая разгадывает тайны атомно-молекулярных построек, создает новые соединения, помогает одевать, обувать людей, строить города, машины.О той, которая разгадывает тайны белковых молекул, составляющих основу живого, и помогает сохранять здоровье человека, продлевать его жизнь, умножать плодородие земли, создавать изобилие продуктов.Будущее химии кажется сейчас совершеннейшей фантастикой. Материалы по заказу… Синтетический белок… Искусственная пища… Замена вышедших из строя органов человеческого тела… И многое, многое другое.Об этих «чудесах», становящихся реальностью на наших глазах, или таких, которые суждено будет увидеть только нашим потомкам, вы и прочтете в этой книге.