Последнее изобретение человечества - [26]
Омохундро — уважаемый профессор в области ИИ, плодовитый научно-популярный писатель и пионер таких областей ИИ, как чтение по губам и распознавание изображений. Он участвовал в создании компьютерных языков StarLisp и Sather, предназначенных для программирования ИИ. В числе всего лишь семи инженеров группы Wolfram Research он создавал мощный программный комплекс Mathematica, любимый учеными и инженерами всего мира.
Омохундро слишком оптимистичен, чтобы легко бросаться таким словами, как катастрофа или уничтожение, но из его анализа ИИ-рисков следуют самые страшные выводы, какие мне доводилось слышать. Он, в отличие от многих теоретиков, не считает, что возможно почти бесконечное число развитых ИИ и что некоторые из них безопасны. Он убежден, что без тщательнейшего программирования все достаточно разумные ИИ будут смертоносны.
Если система осознала себя и способна создать свою улучшенную копию, это великолепно, — сказал мне Омохундро. — Самосовершенствование у нее получится лучше, чем если ее будут модернизировать программисты. С другой стороны, чем она станет после множества итераций? Не думаю, что большинство ИИ-исследователей видят какую-то потенциальную опасность в создании, скажем, робота-шахматиста. Но мой анализ показывает, что нам следует тщательно обдумать, какие ценности мы в него закладываем; в противном случае мы получим нечто вроде психопатической, эгоистической, зацикленной на себе сущности.
Ключевые моменты здесь следующие: даже ИИ-исследователи не подозревают, что, во-первых, полезные системы могут быть опасны и, во-вторых, обладающие самосознанием самосовершенствующиеся системы могут быть психопатическими.
Психопатическими?
Омохундро говорит о плохом программировании. Ошибки программистов, бывало, заставляли дорогущие ракеты врезаться в землю, заживо сжигали раковых больных слишком большой дозой излучения и оставляли миллионы людей без электричества. Если бы все инженерное конструирование было настолько ненадежным и дефектным, как множество реальных компьютерных программ, говорит он, летать на самолетах или ездить по мостам было бы небезопасно.
Национальный институт стандартов и технологий США выяснил, что каждый год дефектное программирование обходится американской экономике более чем в $60 млрд недополученной прибыли. Иными словами, ежегодные потери американцев из-за плохих программ превышают ВВП большинства стран мира.
Величайшая ирония судьбы в том, что компьютерные науки, по идее, должны быть самыми математическими из всех наук, — сказал Омохундро. — По существу, компьютеры — это математические машины, которые должны вести себя абсолютно предсказуемо. При всем том создание компьютерных программ — одно из самых непредсказуемых инженерных занятий, полное ошибок и проблем с безопасностью.
Существует ли противоядие против дефектных ракет и дрянных программ?
Программы, которые исправляют себя сами, — говорит Омохундро. Подход к искусственному интеллекту, который применяет моя компания, состоит в создании систем, которые понимают собственное поведение и способны наблюдать за собой в процессе работы и решения задач. Они замечают, когда в работе происходят сбои, а затем изменяют и улучшают себя.
Самосовершенствующееся программное обеспечение — не просто цель компании Омохундро, но очень логичный и даже неизбежный следующий шаг в развитии большинства программ. Но самосовершенствующихся программ того рода, о котором говорит Омохундро, — таких, чтобы сознавали себя и способны были разрабатывать более совершенные версии, — пока не существует. Однако их предшественники — программы, способные себя модифицировать, — уже работают всюду, и довольно давно. Специалисты по ИИ значительную часть самомодифицирующихся программных методик объединяют в широкую категорию «машинного обучения».
Чему обучается машина? Понятие обучения чем-то напоминает понятие разума, поскольку определений того и другого существует множество, и большинство из них верны. В простейшем смысле машина обучается, когда в ней происходит изменение, позволяющее во второй раз выполнить определенное задание лучше. Машинное обучение сделало возможным интернет-поиск, распознавание речи и рукописного текста; оно помогает пользователю в десятках самых разных приложений.
«Рекомендации» от Amazon — гиганта сетевой торговли — используют алгоритм машинного обучения, известный как анализ парных предпочтений (affinity analysis). Это стратегия, цель которой — сделать так, чтобы вы купили еще что-нибудь похожее (перекрестные продажи), что-нибудь более дорогое, или хотя бы сделать вас объектом дальнейших рекламных акций. Работает все это очень просто. Для любого товара, информацию о котором вы ищете (назовем его А), существуют другие товары, которые часто покупают люди, купившие А, — это товары В, С и D. Запрашивая товар А, вы активируете алгоритм анализа парных предпочтений. Он ныряет в море данных о совершенных покупках и появляется оттуда с перечнем парных товаров. Таким образом, он использует свой постоянно пополняющийся банк данных и с каждым разом работает все лучше.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.