Поистине светлая идея. Эдисон. Электрическое освещение - [35]

Шрифт
Интервал


В том же году железнодорожный магнат Генри Виллард (1835-1900), акционер «Эдисон Электрик Лайт Компани», выдал Эдисону подряд на установку автономной системы освещения на пароходе «Колумбия», самом быстром корабле того времени длиной 110 м и водоизмещением 3200 тонн. Цепь, включающая 115 лампочек, питалась группой из четырех генераторов типа «Мэри Энн». В тесных корабельных помещениях электрический свет был удобнее газового. Несмотря на небольшие размеры, можно считать, что это была первая коммерческая электростанция, так как впервые система Эдисона была установлена за пределами Менло-Парка.

Инвесторы «Эдисон Электрик Лайт», однако, отказались вкладывать в дело те несколько миллионов долларов, которые запрашивал Эдисон для начала массового производства и продажи на рынке электрических установок и аксессуаров к ним. Они хотели продавать лицензии третьим лицам и получать с таких сделок проценты, а не решать сами разнообразные проблемы при запуске производства. Инвесторы знали, что нужно еще разработать огромное количество компонентов, например новые паровые и динамо-машины, и, кроме того, множество видов дополнительных элементов, включая изоляторы.

Эдисон отдавал себе отчет: он сможет воплотить свою мечту и остаться на лидирующих позициях в том секторе, куда уже стали проникать сильные конкуренты, только если спроектирует и построит сам все необходимые элементы для установки домашнего освещения, вплоть до самой мелкой детали. И вот в 1880 году, в возрасте 33 лет, он рискнул поставить на это все свои деньги. Эдисон, со своими сотрудниками Джонсоном, Бэчлором и Эптоном, выступавшими в качестве миноритарных акционеров, превратил старый сарай поблизости от Менло-Парка в фабрику по производству электрических лампочек. Вместе они основали в Нью-Йорке компанию «Эдисон Машин Воркс» для производства ламповых патронов, выключателей, предохранителей, цоколей и, уже во вторую очередь, динамо-машин. Впоследствии была создана компания «Эдисон Электрик Иллюминейтинг», которая специализировалась на освещении домов и улиц Нью-Йорка от большой электростанции. Увидев определенные успехи изобретателя, главные банковские финансисты, а также железнодорожные и телеграфные инвесторы на сей раз согласились вложить в фирму свои капиталы. Полный энтузиазма и энергии, Эдисон переехал в Нью-Йорк, чтобы приняться за трудную задачу электрификации города.

В феврале 1881 года Эдисон приобрел роскошную виллу в четырех остановках от Пятой Авеню (одного из самых престижных районов Нью-Йорка), собираясь устроить там свою штаб-квартиру и выставочный зал для презентаций своих новых изобретений. Электрическая система освещения этого здания в дальнейшем стала образцом тех, которые устанавливались в жилых помещениях, начиная с резиденций самых могущественных семейств Вандербильтов и Морганов.


ЭФФЕКТ ЭДИСОНА

В 1883 году Эдисон совершил открытие физического эффекта, который считается его единственным собственно научным достижением. Несколькими годами ранее он заметил, что внутренняя поверхность стеклянной колбы лампочки накаливания чернеет и что это явно происходит из-за осаждения на ней угольных частиц нити накаливания. Поскольку срок службы и яркость свечения лампочек под воздействием данного явления снижались, изобретатель попытался найти объяснение такому перемещению частиц с нити накаливания на внутреннюю поверхность колбы. Обнаружив, что частицы улетают только с части нити, подсоединенной к отрицательному полюсу лампы, Эдисон в 1882 году разработал лампу со встроенным в нее электродом, который должен был притягивать летящие частицы. Модель очень напоминала вакуумные трубки с двумя электродами (диоды), появившиеся значительно позже. В 1883 году Эдисон открыл, что электричество стабильно течет через вакуум внутри лампы, и отметил: интенсивность движения тока пропорциональна температуре раскаленного проводника, или, иными словами, световой отдаче лампы. Воспользовавшись данным явлением, изобретатель запатентовал устройство, которое могло регулировать напряжение, и предположил, что с помощью такой регуляции можно создать звуковой телеграф. Ни Эдисон, ни его современники не знали: в этой примитивной вакуумной трубке освобождаются электроны раскаленного катода и через вакуум текут к положительному электроду (аноду), замыкая тем самым цепь. Об электронах вообще никто не знал до 1897 года, когда британский физик Дж. Дж. Томсон (1856-1940) ввел это понятие и доказал их существование, изучая как раз так называемый «эффект Эдисона». В то время результаты Эдисона были с интересом восприняты научным сообществом, удивленным тем фактом, что ток может проходить через вакуум. Этот первый «электронный» прибор в дальнейшем обеспечил возможность появления таких аппаратов, как вакуумные лампы, телевидение, радары и многие другие устройства новой технологической эры.

Придуманное Эдисоном устройство, позднее названное диодом.


Эдисон выбрал район, представлявший собой квадрат стороной 800 м, ограниченный Уолл-Стрит и Ист-Ривер. Там проживали многие финансисты и предприниматели. Чтобы приобрести клиентуру, он предлагал им заменить газ электричеством по цене газа и, опираясь на расход газа, регистрировавшийся в каждом доме, рассчитывал потребность в электроэнергии.


Еще от автора Маркос Хаэн Санчес
Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Двустороннее движение электричества. Тесла. Переменный ток

Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике.


Рекомендуем почитать
Малый ледниковый период. Как климат изменил историю, 1300–1850

Представьте, что в Англии растет виноград, а доплыть до Гренландии и даже Америки можно на нехитром драккаре викингов. Несколько веков назад это было реальностью, однако затем в Европе – и в нашей стране в том числе – стало намного холоднее. Людям пришлось учиться выживать в новую эпоху, вошедшую в историю как малый ледниковый период. И, надо сказать, люди весьма преуспели в этом – а тяжелые погодные условия оказались одновременно и злом и благом: они вынуждали изобретать новые технологии, осваивать материки, совершенствовать науку.


Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе.


Всё о рождении ребёнка

Книга Алисы Макмахон станет вашим гидом на дороге длиной в девять месяцев. Автор обеспечит вас всей необходимой информацией, поможет прогнать ненужные опасения и даст спокойное понимание того, что происходит в момент появления на свет новой жизни, а также ответит на многие вопросы, которые неизбежно возникнут до и после родов. Для широкого круга читателей и специалистов.


Укус эволюции. Откуда у современного человека неправильный прикус, кривые зубы и другие деформации челюсти

Огромное количество детей и взрослых по всему миру имеют проблемы с прикусом, и эти проблемы носят не только эстетический характер, они могут стать причиной серьезных заболеваний. В этой книге врач-стоматолог Сандра Кан, и Пол Р. Эрлих, известный биолог, изучают причины и последствия неправильного развития челюсти у современного человека, а также представляют новый взгляд на ортодонтию и лечение зубов. По их мнению, из-за недостаточного развития челюсти могут возникать апноэ, затруднение дыхания, болезни сердца, депрессия и другие опасные состояния.


Смерть и оживление

Научно-популярная брошюра для крестьян, 1926 г.


На что похоже будущее? Даже ученые не могут предсказать… или могут?

Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.