Поистине светлая идея. Эдисон. Электрическое освещение - [34]

Шрифт
Интервал

РИС. 4

РИС. 5

РИС. 6


Вплоть до 1878 года единственным известным способом распределения электрического тока по сети являлась последовательная схема (см. рисунок 4), где все элементы были подключены друг за другом и для электротока существовал единственный возможный путь. Сопротивление такой цепи — это арифметическая сумма сопротивлений всех ее элементов, а напряжение в ней равно сумме напряжений на всех клеммах ее компонентов. Ток в такой цепи неизменен в любой ее точке.

В последовательном контуре генератор напрямую соединяет индуктор с внешней цепью. Индуктор — это вращающаяся часть машины, где производится превращение механической энергии в электрическую путем электромагнитной индукции. Катушки данного генератора состоят из нескольких витков твердого железного провода низкого сопротивления. Это нестабильно работающая система, в которой напряжение плавает при изменении нагрузки, так что добавление или исключение из цепи ламп вызывает изменение света в остальных. Поскольку электрическое освещение имело практическое значение в местах поселения множества людей, Эдисон знал, что должно быть возможным зажигать и тушить каждую лампу независимо, не влияя на остальные компоненты цепи.

Изобретатель спроектировал параллельную цепь (см. рисунок 5), в которой конфигурация компонентов строилась таким образом, чтобы ток делился между ними. Если в последовательном контуре сила тока являлась величиной постоянной, а напряжение зависело от нагрузки, то в параллельном постоянным было напряжение, а сила тока, который подводился к каждому конкретному прибору, изменялась при подключении или выключении дополнительных элементов цепи или параллельного ответвления.

Главным элементом схемы Эдисона являлся генератор, мощность которого должна была удовлетворять потребности системы. Недовольный существующими конструкциями генераторов, Эдисон поставил задачу команде Менло-Парка разработать устраивающую его динамо-машину. Первая машина Эдисона имела неповторимый вид (см. рисунок 6). Ее катушки располагались вертикально почти на длину человеческого роста, поэтому она заработала прозвище «длинноногая Мэри Энн». Принцип работы аппарата был таким же, как и у любого двухполюсного генератора постоянного тока. Однако его схема обеспечивала исключительно низкое сопротивление, и если поддерживать постоянную скорость вращения, то напряжение генератора оставалось (с небольшими колебаниями) на уровне 110 вольт — величина, рассчитанная Эптоном для системы электрического освещения.

Согласно Эдисону, «Мэри Энн» могла работать на максимальной мощности без перегрева, превращая до 90 % механической энергии в электрическую. Иными словами, КПД генератора составлял 90%. Несмотря на это, многие ученые критиковали его расчеты, находя их ошибочными. В то время считалось доказанным, что отношение между внутренним сопротивлением динамо-машины и сопротивлением нагрузки не позволяет генератору достичь эффективности более 50%.

РИС. 7

Схема трехпроводной системы, включающей два провода под нагрузкой и один нулевой.


Скоро стало ясно: «вопрос экономии», как называл его сам Эдисон, вовсе не второстепенен. Простая цепь с определенным количеством лампочек нуждалась в электрическом токе большой силы, для чего требовалось огромное количество меди. Акционеры Эдисона торопили его, желая получить конструкцию всей системы освещения нужных масштабов, с целью оценить ее рентабельность и возможные слабые стороны. С зимы 1879 года команда из 100 специалистов работала над монтажом электрической распределительной сети в окрестностях Менло-Парка. Ей предназначалось служить моделью будущих сетей, гораздо больших по масштабу. В 1880 году появилась система, включающая одну электростанцию и 425 лампочек, работающих с той же рентабельностью, что и прежние газовые лампы, поскольку употребление меди было снижено в восемь раз по сравнению с первоначальным. Впоследствии его удалось снизить еще на 64 % за счет так называемой трехпроводной распределительной системы, которая удваивала пропускную способность цепи без необходимости в четыре раза увеличивать объем проводов, так как в нее добавили «нулевой» провод (см. рисунок 7).


ПОЕЗД НА ЭЛЕКТРИЧЕСКОЙ ТЯГЕ

Весной 1880 года Эдисон велел построить короткую железнодорожную линию длиной 350 м, на которой опробовал первый электрический локомотив длиной 1,90 м, шириной 1,20 м и мощностью 8,1 кВт (11 л.с.). Таким образом, встал вопрос о первом электровозе больших размеров. Генри Виллард, король железных дорог, был так впечатлен демонстрацией, что выделил 40 тысяч долларов на разработку более мощного и быстрого локомотива. Эдисон не замедлил представить поезд, достигавший скорости 65 км/ч и снабженный электрической тормозной системой. Тем не менее консервативно настроенные железнодорожные магнаты не верили в возможность заменить паровозы локомотивами на электрической тяге, и идея электрического поезда не получила развития. Несколько лет спустя Эдисон потерял интерес к этой теме: патенты не окупались, а поддержка Генри Вилларда исчезла с крахом его компании «Норзен Пасифик Рейлроуд». И все-таки проект не оказался заброшенным полностью: пока Эдисон занимался освещением, он поручил Фрэнку Спрагу продолжить работу над электродвигателем для городского трамвая, и в данной области были достигнуты значительные успехи.


Еще от автора Маркос Хаэн Санчес
Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Двустороннее движение электричества. Тесла. Переменный ток

Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике.


Рекомендуем почитать
Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе.


Всё о рождении ребёнка

Книга Алисы Макмахон станет вашим гидом на дороге длиной в девять месяцев. Автор обеспечит вас всей необходимой информацией, поможет прогнать ненужные опасения и даст спокойное понимание того, что происходит в момент появления на свет новой жизни, а также ответит на многие вопросы, которые неизбежно возникнут до и после родов. Для широкого круга читателей и специалистов.


Укус эволюции. Откуда у современного человека неправильный прикус, кривые зубы и другие деформации челюсти

Огромное количество детей и взрослых по всему миру имеют проблемы с прикусом, и эти проблемы носят не только эстетический характер, они могут стать причиной серьезных заболеваний. В этой книге врач-стоматолог Сандра Кан, и Пол Р. Эрлих, известный биолог, изучают причины и последствия неправильного развития челюсти у современного человека, а также представляют новый взгляд на ортодонтию и лечение зубов. По их мнению, из-за недостаточного развития челюсти могут возникать апноэ, затруднение дыхания, болезни сердца, депрессия и другие опасные состояния.


Смерть и оживление

Научно-популярная брошюра для крестьян, 1926 г.


ГОРМОНичное тело

Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.


На что похоже будущее? Даже ученые не могут предсказать… или могут?

Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.