Поистине светлая идея. Эдисон. Электрическое освещение - [25]

Шрифт
Интервал

Большинство своих акустических экспериментов Гельмгольц провел между 1855 и 1858 годами. В 1857 году он представил большую часть своей работы на конференции в Боннском университете. В ней участвовал и молодой Иоганн Филипп Рейс, на которого доклад Гельмгольца произвел глубокое впечатление, после чего он решил посвятить себя исследованиям в данной области. Гельмгольц полностью не публиковал результаты своих долголетних изысканий вплоть до 1863 года. Он сделал это в книге, которая называлась «Учение о слуховых ощущениях как физиологическая основа для теории музыки», оказавшей огромное влияние на музыковедение и последующие акустические исследования.

Пока Гельмгольц занимался своими опытами, во Франции рождалось первое устройство, способное регистрировать звук: фоноавтограф. Оно не записывало звуки в современном смысле этого слова, однако делало их видимыми, рисуя их. Основой служила зачерненная бумага, которая, естественно, затем не могла воспроизвести звук. Изобретатель прибора, француз Эдуард Леон Скотт де Мартинвилль (1817-1879), запатентовал его в 1857 году с намерением повторить со звуком результат (и успех), достигнутый несколько ранее с фотографией. Однако его творение не нашло пути на рынок развлечений, но было оценено как лабораторный прибор, облегчающий акустические исследования: его использовали для определения частоты и музыкального тона, а также для изучения свойств звуковых колебаний.

РИС. 1

РИС. 2

Схема фоноавтографа. ВС: раструб, открытый со стороны С. с: металлическое кольцо с мембраной и стилусом b и с регулятором контакта а. d: рукоятка для вращения цилиндра (А), вокруг которого обернута зачерненная сажей бумага. 


Чтобы разработать свой прибор (см. рисунок 2), Скотт де Мартинвилль стал изучать механические средства записи голоса и заинтересовался анатомией человеческих органов слуха. Взяв за образец работу человеческого уха, он заменил барабанную перепонку эластичной мембраной, а слуховые косточки — набором рычагов, двигающих специальный стилос. Звуковые волны собирались воронкой и направлялись на мембрану, колебания которой фиксировались стилосом на поверхности покрытой сажей бумаги, обернутой вокруг вращающегося рукояткой цилиндра.

И только после появления фонографа стало понятно, что рисунки, сделанные фоноавтографом, действительно представляют собой изображения звуковых волн, которые, если иметь соответственную аппаратуру, можно снова превратить в звук. В 2008 году группа историков оцифровала эти самые старые «фоноавтограммы» и смогла воспроизвести их. Таким образом, французская народная песенка А и clair de la lune («В свете луны»), спетая некоей девушкой 9 апреля 1860 года, за 17 лет до первой звукозаписи Эдисона, теперь является самой старой известной записью человеческого голоса.


ЗВУКОВЫЕ ВОЛНЫ

Звуковая волна представляет собой механическую волну продольного типа, в которой колебания частиц среды происходят в направлении распространения волны. Она распространяется в упругой и непрерывной среде, такой как воздух, создавая местную разницу в давлениях и плотности, и имеет сферическую периодическую или полупериодическую форму. Изменения давления, влажности или температуры среды приводят к смещению составляющих ее молекул, так что каждая молекула передает колебания соседним с ней, вызывая по цепочке их смещение. Поэтому звуковые волны для распространения нуждаются в материальной среде, такой как воздух, вода или твердое тело, поскольку именно такая среда производит и поддерживает распространение звуковых волн вместе с областями сжатия и расширения среды, вызванными соответственно концентрацией или рассеянием частиц, которые составляют среду. Следовательно, быстрее всего звуковые волны распространяются в твердых телах, и медленнее всего — в воздухе, и естественно, они не могут распространяться в вакууме. Это распространение движения молекул среды производит в слуховых органах человека ощущение, которое называют звуком. Известно, что человеческий слух может воспринимать звуковые волны с частотами от 20 до 20000 Гц. Частотой волны называется количество колебаний в единицу времени. Единица измерения частоты в Международной системе единиц — 1 герц (Гц).


ПЕРВЫЙ ФОНОГРАФ: ОЛОВЯННЫЙ ВАЛИК

Хотя Эдисон был захвачен работой над телефоном, он раз за разом возвращался к идее записи и воспроизведения звука.

РИС. 3

РИС. 4

Схема работы фонографа. А: рукоятка. В: ось привода. С: картонный цилиндр, обернутый оловянным листом. D: стилос. Е: мембрана. F: акустические раструбы записи и воспроизведения. Звуковые волны улавливаются акустическим раструбом и заставляют колебаться мембрану, и связанная с ней игла нарезает дорожку.


Впоследствии, всю оставшуюся жизнь, он признавался, что именно фонограф стал его главным изобретением, которому он посвятил всего себя и в успех которого он вложил все свои надежды и энтузиазм. На этом Эдисон всегда настаивал.

К концу 1877 года у изобретателя уже сформировались основные принципы, с помощью которых можно было сложить все куски этого пазла, так что он представил проект небольшой и очень простой машины своему сотруднику Джону Крузи. На иглу передавались движения мембраны, но записывались они не на диске, как в экспериментах по автоматической телеграфии, а на тонком листе олова (очень мягкого металла), обернутом вокруг цилиндра, как в аппарате Скотта де Мартинвилля. Идея состояла в том, чтобы изготовить прототип и посмотреть, как он будет работать.


Еще от автора Маркос Хаэн Санчес
Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Двустороннее движение электричества. Тесла. Переменный ток

Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике.


Рекомендуем почитать
Знание-сила, 2000 № 05-06 (875,876)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1998 № 07 (853)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Дьявольский ген

Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.


Стареть, не старея. О жизненной активности и старении

Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.


Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.