Почему Е=mc²? И почему это должно нас волновать - [40]
Что мы можем сказать о сохранении γmc? Поскольку c – это универсальная константа, значение которой всегда одинаково, закон сохранения γmc равносилен утверждению, что масса сохраняется. Этот вывод не стал для нас большой неожиданностью, поскольку согласуется с интуицией, хотя довольно интересно, что он появился как будто ниоткуда. Например, можно утверждать, что после сгорания угля в печи масса пепла (плюс масса вещества, вылетевшего через дымоход) должна быть равна массе угля до его сжигания. Тот факт, что значение γ не равно в точности единице, кажется несущественным, и у нас может возникнуть соблазн двигаться дальше, удовлетворившись тем, что мы и так уже многого добились. Мы определили импульс таким образом, что он представляет собой значимую величину в пространстве-времени, благодаря чему внесли коррективы (в большинстве случаев незначительные) в определение импульса, принятое в XIX столетии, и в то же время вывели закон сохранения массы. На что еще мы могли рассчитывать?
Нам понадобилось достаточно много времени, чтобы добраться до этого момента, но нас все же ждет неожиданный финал этого повествования. Мы более внимательно проанализируем ту часть вектора импульса, который указывает направление во времени, а сделав это, чудесным образом выведем самую знаменитую формулу Эйнштейна. Мы с вами проделали большой путь, и вы узнали многое из того, что должен знать профессиональный физик о четырехмерных векторах и пространстве Минковского. Теперь мы готовы к кульминации.
Мы установили, что значение γmc должно сохраняться. Теперь нам необходимо объяснить, что именно это означает. Если вы представите себе игру в релятивистский бильярд, то в ней каждый шар имеет свое значение γmc. Сложите вместе все эти значения – и какой бы ни была общая сумма, она останется неизменной. А теперь давайте поиграем в игру, которая поначалу покажется бессмысленной. Если значение γmc сохраняется, то сохраняется и значение γmc² – просто потому, что c – это константа. Вскоре вам станет понятно, зачем мы так поступили. В то же время значение γ не равно в точности единице, и в случае малых скоростей его можно аппроксимировать посредством формулы γ = 1 + v² ÷ 2c². С помощью калькулятора вы можете проверить самостоятельно, что эта формула работает достаточно хорошо для скоростей, которые можно считать малыми по сравнению с с (то есть она дает практически те же значения, что и точная формула γ = 1 ÷ √(1 − v²/с²). Если у вас под рукой нет калькулятора, надеемся, представленная ниже таблица вас убедит. Обратите внимание, что приближенная формула (которая дает значения, представленные в третьем столбце) на самом деле очень точна даже в случае скоростей, составляющих десять процентов от скорости света (v/c = 0,1), что представляет собой недостижимую в обычных условиях скорость 30 миллионов метров в секунду.
Таблица
Если принять это упрощение, то значение γmc² приближенно равно mc² + ½mv². В этот момент мы можем осознать крайне важные последствия наших действий. Мы пришли к выводу, что для малых по сравнению с с скоростей сохраняется величина mc² + ½mv². Точнее говоря, величина γmc², но на данном этапе первое уравнение гораздо лучше позволяет понять суть происходящего. Почему? Как вы уже знаете, произведение mv² ÷ 2 – это кинетическая энергия, с которой мы познакомились в примере со сталкивающимися бильярдными шарами. Благодаря этой формуле можно определить, какой энергией обладает объект с массой m, движущийся со скоростью v. Мы обнаружили, что существует нечто сохраняющееся, равное чему-то (mc²) плюс кинетическая энергия. Имеет смысл называть это «нечто» сохраняющейся энергией, но у него есть две составляющие: одна – mv² ÷ 2 и вторая – mc². Пусть вас не сбивает с толку тот факт, что мы выполнили умножение на с. Мы сделали это исключительно для того, чтобы наш окончательный ответ включал в себя такой член уравнения, как mv² ÷ 2, а не mv² ÷ 2с. Первая из двух формул описывает то, что ученые многих поколений называли кинетической энергией. При желании вы можете обозначить mv² ÷ 2с термином «кинетическая масса» или придумать любое другое название, которое здесь не играет особой роли (даже если оно столь же важное, как термин «энергия»). Имеет значение лишь следующее: временная компонента вектора момента в пространстве-времени и эта величина сохраняются. Нужно признать, что формулировка «временная компонента вектора момента в пространстве-времени равна
В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.На русском языке публикуется впервые.
Данная книга посвящена древним мегалитическим сооружениям и другим памятникам Земли, с которыми связано множество легенд, мифов и интересных гипотез. Читателей ждут встречи с такими загадочными сооружениями, как изваяния острова Пасхи, каменные шары Коста-Рики, Стоунхендж, Мохенджо-Даро, этрусские саркофаги, Парфенон, Гугун и т.д.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.