Почему Е=mc²? И почему это должно нас волновать - [39]

Шрифт
Интервал

Ранее мы с вами вывели выражение для длины вектора импульса в трехмерном пространстве – mx/t. Мы исходили из того, что ∆x следует заменить на ∆s, а ∆t – на ∆s/c, для того чтобы получить четырехмерный вектор импульса, который имеет на первый взгляд неинтересную длину mc. Потерпите нас еще один абзац и позвольте написать замену для ∆t, то есть для ∆s/c, в полном виде: ∆s/c равно √((ct)² − (∆x)²) ÷ c. Это несколько громоздкое выражение, однако небольшая математическая манипуляция позволяет записать его в более простом виде: ∆t/γ, где γ = 1 ÷ √(1 − v² ÷ c²). Для получения этой формулы мы использовали тот факт, что скорость объекта рассчитывается как v = ∆x/t. В таком случае γ – это не что иное, как множитель, о котором шла речь в главе 3, выражающий величину замедления времени с точки зрения того, кто наблюдает за быстро пролетающими мимо часами.

В действительности мы уже почти добрались до цели. Смысл всех этих математических выкладок состоит в том, что они позволяют определить, в какой степени вектор импульса указывает направление в пространстве и времени по отдельности. Для начала давайте вспомним, как мы поступали с вектором импульса в трехмерном пространстве. Рис. 11 поможет нам представить себе эту ситуацию. Трехмерный вектор импульса ориентирован в ту же сторону, что и стрелка на рисунке, поскольку он указывает в том направлении, в котором движется шар. Разница лишь в том, что изменится длина вектора, потому что нам необходимо умножить длину стрелки на массу шара и разделить на временной интервал. Аналогичная ситуация складывается и для четырехмерного вектора. Теперь вектор импульса указывает направление в пространстве-времени, в котором движется шар, что соответствует направлению стрелки на рис. 12. В этом случае для получения вектора импульса нам следует изменить масштаб длины стрелки, но на сей раз раз мы должны умножить ее на массу шара и разделить на инвариантную величину ∆s/c (которая, как мы продемонстрировали выше, равна ∆t/γ). Если вы внимательно посмотрите на стрелку на рис. 12, то увидите, что, если мы захотим изменить длину на определенную величину, сохранив при этом направление, нужно просто изменить часть, указывающую в направлении x (∆x), и часть, указывающую в направлении времени (ct), в одинаковое количество раз. Таким образом, длина части вектора импульса, которая указывает в направлении пространства, представляет собой ∆x, умноженное на m и деленное на ∆t/γ, что можно записать как γmx/t. Если вспомнить, что v = ∆x/t – это скорость движения объекта в пространстве, то мы получим следующий ответ: часть вектора импульса в пространстве-времени, указывающая в направлении пространства, имеет длину, равную γmv.

Теперь все становится действительно интересным: вектор импульса в пространстве-времени, который мы только что построили, никак нельзя назвать скучным. Если скорость v нашего объекта намного меньше скорости света c, значение γ оказывается очень близко к единице. В этом случае мы снова получаем старый импульс, а именно – произведение массы на скорость: p = mv. Это очень обнадеживает, так что давайте двигаться дальше. В действительности нам удалось сделать нечто гораздо большее, чем просто преобразовать старый трехмерный импульс в новую четырехмерную структуру. Начнем с того, что мы получили, по-видимому, более точную формулу, поскольку значение γ может быть равным единице, только когда скорость равна нулю.

Но то, что мы увидим, когда рассмотрим часть вектора импульса, указывающую в направлении времени, еще интереснее, чем модифицированная формула p = mv. После всего, что мы уже проделали, нам нетрудно будет выполнить соответствующие расчеты (ответ показан на рис. 13). Длина части нового вектора импульса, которая указывает в направлении времени, равна значению ct, умноженному на m и деленному на ∆t/γ, что представляет собой γmc.


Рис. 13


Следует помнить, что импульс интересует нас только потому, что он сохраняется. Поэтому мы искали новый четырехмерный импульс, который будет сохраняться в пространстве-времени. Мы можем представить себе совокупность векторов импульса, указывающих в разных направлениях. Они могут отображать, например, импульсы определенного количества частиц, которые должны вот-вот столкнуться. После столкновения образуется новая совокупность векторов импульса, указывающих в других направлениях. Однако закон сохранения импульса гласит, что общая сумма всех новых стрелок должна в точности соответствовать сумме исходных. Это, в свою очередь, означает, что должна сохраняться также общая сумма частей всех стрелок, указывающих в направлении пространства, так же как и сумма частей, указывающих в направлении времени. Таким образом, если мы подсчитаем значения γmv для каждой частицы, то общая сумма этих значений до столкновения должна быть такой же, как и общая сумма после него. То же самое происходит и с частями вектора импульса, указывающими в направлении времени, только в этом случае сохраняется общая сумма значений γmc. Похоже, у нас есть два новых закона физики: γmv и γmc – это сохраняющиеся величины. Но чему они соответствуют? На первый взгляд во всем этом нет ничего особенного. Если скорость достаточно низкая, то значение γ очень близко к единице, а γ


Еще от автора Джефф Форшоу
Квантовая вселенная. Как устроено то, что мы не можем увидеть

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.На русском языке публикуется впервые.


Рекомендуем почитать
Загадки острова Пасхи

Данная книга посвящена древним мегалитическим сооружениям и другим памятникам Земли, с которыми связано множество легенд, мифов и интересных гипотез. Читателей ждут встречи с такими загадочными сооружениями, как изваяния острова Пасхи, каменные шары Коста-Рики, Стоунхендж, Мохенджо-Даро, этрусские саркофаги, Парфенон, Гугун и т.д.


Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.