Почему Е=mc²? И почему это должно нас волновать - [34]

Шрифт
Интервал

й оси, как показано на рис. 9, а длина этого вектора – просто количество времени, измеренного по его часам и умноженное на c. Некто, пролетающий мимо на высокой скорости, мог бы воспринять спящего в постели как движущийся объект. В таком случае он включил бы в расчеты еще и движение в пространстве, наблюдая за человеком в постели, а это смещает конец вектора с временной оси. Поскольку длина стрелки не может меняться, ее конец должен оставаться на гиперболе. Эту мысль иллюстрирует вторая, наклонная, стрелка на рис. 9. Как видите, часть вектора, указывающая в направлении времени, увеличилась, а это значит, что с точки зрения быстро движущегося наблюдателя между этими двумя событиями проходит больше времени (другими словами, его часы отсчитывают более десяти часов). Это еще один способ представить странный эффект замедления времени.

Вот и все, что следовало сказать о векторах, – во всяком случае пока (вектор скорости в пространстве-времени понадобится нам снова чуть позже). Несколько следующих абзацев посвящены второму важному фрагменту головоломки E = mc². Представьте себе, что вы физик, пытающийся понять, как устроена Вселенная. Вы уже спокойно воспринимаете идею векторов и даже составили ряд математических уравнений, которые их содержат. А теперь вообразите, что кто-то, скажем один из ваших коллег, говорит вам, что существует особый вектор, который никогда не меняется, что бы ни происходило в той части Вселенной, к которой он относится. Сначала вы, возможно, это проигнорируете: если ничего не меняется, то вряд ли удастся раскрыть суть рассматриваемого вопроса. Но ваш интерес усилится, если коллега уточнит, что этот особый вектор образован посредством суммирования ряда других векторов, каждый из которых связан с отдельной частью объекта, который вы пытаетесь понять. Различные части этого объекта способны перемещаться, и когда они делают это, каждый из отдельных векторов может меняться, но всегда таким образом, что общая сумма всех векторов образует все тот же неизменный особый вектор. Кстати, суммирование векторов – очень легкий процесс, мы еще к нему вернемся.

Чтобы продемонстрировать, насколько полезной может быть идея неизменных векторов, давайте поразмышляем над очень простой задачей: попробуем понять, что происходит с двумя бильярдными шарами в момент их столкновения. Пример из бильярда вряд ли можно назвать жизненно важным, однако физики любят подобные примеры, но не потому, что могут изучать только простые явления или обожают бильярд, а скорее потому, что во многих случаях сложные концепции легче понять, проиллюстрировав их сначала на простых примерах. Но вернемся к бильярду: ваш коллега говорит, что вам следует связать с каждым шаром вектор, который должен быть ориентирован в направлении движения шара. Предполагается, что, сложив два вектора (по одному на каждый шар), можно получить особый неизменный вектор. Это означает, что независимо от того, что происходит в момент столкновения шаров, мы можем быть уверены, что сложение двух векторов, связанных с шарами после столкновения, образует точно такой же вектор, как и полученный из двух шаров до столкновения. Потенциально это очень важный вывод. Наличие особого вектора существенно ограничивает возможные последствия столкновения. Пожалуй, еще большее впечатление произвело бы на нас утверждение вашего коллеги о том, что принцип «сохранения векторов» работает в любой системе событий, происходящих во Вселенной, – от столкновения бильярдных шаров до взрыва звезды. По всей вероятности, для вас не станет неожиданностью тот факт, что физики не используют обозначения «особый вектор», заменив его таким термином, как «вектор импульса», а сохранение векторов широко известно как «закон сохранения импульса».

Остались невыясненными два момента: какова длина векторов импульса и как именно их следует суммировать? Сложение векторов не составляет труда – для этого необходимо разместить один за другим все векторы, которые мы хотим суммировать. Конечный результат состоит в определении вектора, связывающего начало первой и конец последней стрелки. На рис. 10 показано, как это делается для трех произвольно выбранных стрелок. Большая стрелка – это сумма маленьких. Длину вектора импульса можно установить экспериментальным путем, и исторически именно так и было. Сама концепция возникла более тысячи лет назад – просто в силу своей полезности. В приближенном смысле она отображает разницу между ударом теннисного мяча и экспресса, когда оба движутся со скоростью 100 километров в час. Как мы уже говорили, концепция вектора импульса непосредственно связана со скоростью и, как наглядно показывает предыдущий пример, должна быть связана и с массой. Согласно доэйнштейновской физике, длина вектора импульса – это произведение массы и скорости. И, как мы уже знаем, этот вектор ориентирован в направлении движения. Следует отметить, что современное представление об импульсе как о сохраняемой величине имеет отношение к работе Эмми Нётер (мы уже обсуждали это). Затем мы узнали о существовании глубинной связи между законом сохранения импульса и трансляционной инвариантностью. С помощью символов величину импульса частицы с массой 


Еще от автора Джефф Форшоу
Квантовая вселенная. Как устроено то, что мы не можем увидеть

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.На русском языке публикуется впервые.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.