По ту сторону кванта - [62]

Шрифт
Интервал

>Химия

Начали строить — и оказалось, что без Химии обойтись не удается. Споткнулись уже на литии: вместо того чтобы расположить два электрона на первой оболочке, а третий — на второй, поместили все три его электрона на одну оболочку. Но в годы подъема такие частные затруднения быстро преодолеваются.

Выход нашли почти тотчас же, как только обратились к периодической системе элементов Менделеева, которая и прежде не раз выручала и физиков и химиков. В самом деле, если химические свойства веществ зависят от электронов, которые окружают ядро, то периодичность химических свойств элементов прямо указывает на то, что электроны в атомах расположены не как попало, а группами — оболочками. Вполне логично было предположить, что число электронов в каждой из оболочек совпадает с длиной периодов таблицы Менделеева. Вольфганг Паули так и сделал.

Лишь после этого удалось создать образ не только атома водорода, но и более сложных атомов. В целом форма электронного облака в тяжелых атомах не очень сильно отличается от наших рисунков. Но рассчитать ее точно удалось лишь после работ английского ученого Дугласа Хартри и советского физика Владимира Александровича Фока. Это очень сложная задача, которая не всегда по плечу даже современным вычислительным машинам, а тем более нам сейчас.

Говоря о форме тел, мы, как правило, предполагаем, что у них есть также и размеры. Однако это не всегда верно: у бильярдного шара есть и форма и размеры, но о размерах облака говорить уже трудно, хотя форма его обычно не вызывает сомнений.

Самое неожиданное следствие новой модели атома состоит в том, что атом не имеет определенных геометрических размеров. Иными словами, границу атома можно отметить лишь условно — точно так же, как и очертания облака. Мы вынуждены принять это следствие новой модели атома, чтобы объяснить наблюдаемые свойства тел, например разнообразие геометрических форм кристаллов. Нас не должно это особенно удивлять — ведь и дома построены из кирпичей, но нам не кажется странным, что кирпичи — это не дом в миниатюре, а просто кирпичи. У тел, окружающих нас, есть цвет, запах, есть размеры, но атомы, из которых построены эти тела, не обладают ни одним из этих качеств. У них осталось только одно неизменное свойство — масса. А неизменной формы нет. Неизменны лишь законы квантовой механики, которые управляют этой формой.

Но почему атом, у которого даже нет размеров, так устойчив? Нас не должно удивлять и это: в конце концов Земля тоже не стоит на трех китах, однако уже миллионы лет, повиснув в пустоте, сохраняет свою орбиту неизменной. Секрет ее устойчивости — в движении и в неизменности динамических законов, которые этим движением управляют. В этом же причина устойчивости атомов, хотя законы, управляющие движением электронов, совсем не похожи на законы небесной механики.

(Справедливости ради следует заметить, что квантовая устойчивость значительно надежнее, чем динамическая устойчивость классической механики: разрушенный атом восстанавливает свою структуру, но орбита Земли уже никогда не станет прежней, если однажды ее нарушит внезапное вмешательство инородного космического тела.)

Атомы различных элементов разнятся между собой массой и зарядом ядра. Но по какому признаку различить два атома одного и того же элемента? Для арбузов такой вопрос неактуален: никто никогда не видел двух совершенно одинаковых арбузов. Отличить один кирпич от другого уже много сложнее, и только в том случае, если кирпичи битые, задача немного упрощается.

>Атомы различных элементов

С атомами дело обстоит точно так же. Если их массы и заряды ядер равны, то различаться атомы могут только формой электронного облака — других свойств у них просто нет; два атома можно различить лишь в том случае, если один из них возбужден. Все невозбужденные атомы одного и того же элемента неразличимы между собой, как кирпичи из одной формы. Роль такой формы для атомов играют динамические законы квантовой механики, неизменные и одинаковые для всех атомов.

>Форма электронного облака 1

Портреты атома на рисунке отражают наш нынешний уровень знаний о нем. Это и есть тот современный образ атома, который заменил собой модели Демокрита, Томсона и Бора. Конечно, и теперешние «портреты» не следует понимать слишком буквально: это отнюдь не «фотографии атомов», подобные фотографиям колеблющейся струны. Ни простыми, ни сложными приборами мы не можем прямо измерить распределение электронной плотности внутри атома, потому что это неизбежно разрушит его (даже арбуз, чтобы проверить его качества необходимо предварительно разрезать). И все же у нас есть много оснований верить найденной картине: с ее помощью мы можем последовательно объяснить все опыты которые привели нас к нынешнему образу атома.

>Форма электронного облака 2

Теперь нас не должно удивлять, что λ-частицы в опытах Резерфорда беспрепятственно пролетали сквозь миллиарды атомов, как через пустоту. Ведь, пронизывая кометные хвосты, Земля тоже никогда не отклоняется от своей орбиты. Понятен должен быть нам и механизм появления спектральных линий: просто атом скачком изменяет форму распределения электронного облака, излучая квант энергии. Мы должны теперь понять и расщепление частоты спектральных линий в электрическом поле (эффект Штарка) и в магнитном поле (эффект Зеемана): электронное облако заряжено, и его различные формы под воздействием полей немного изменяются, а вместе с ними изменяется и энергия кванта, которую необходимо затратить, чтобы перевести облако из одной формы в другую, и частота ν спектральной линии, которая этому кванту соответствует. Эти простые качественные рассуждения можно подтвердить строгими расчетами и доказать, что они совпадают с экспериментальными фактами.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.