По ту сторону кванта - [58]

Шрифт
Интервал

Конечно, приведенная аналогия, как и всякая аналогия, и неполна и нестрога. Она лишь помогает нам почувствовать единство и противоречивость всей системы человеческих знаний.

ВОКРУГ КВАНТА

ДУАЛИЗМ И НЕОПРЕДЕЛЕННОСТЬ

В волновой оптике давно знали, что ни в какой микроскоп нельзя разглядеть частицу, если ее размеры меньше, чем половина длины волны света, которым она освещена. В этом не видели ничего странного: волны света существуют сами по себе, частица — сама по себе. Но когда выяснилось, что частице тоже можно приписать длину волны, тогда это утверждение волновой оптики превратилось в соотношение неопределенностей: не может частица сама себя локализовать точнее, чем на половине длины своей же волны.

В пору становления квантовой механики даже хорошие физики с горечью шутили, что теперь им приходится по понедельникам, средам и пятницам представлять электрон частицей, а в остальные дни — волной.

Такой способ мышления приводил к множеству парадоксов, от которых мы будем избавлены, если сразу же заставив себя не разделять в электроне свойства «волна — частица». Только после этого соотношение неопределенностей Гейзенберга перестанет быть чем-то странным и превратится в простое следствие корпускулярно-волнового дуализма.

Чтобы убедиться в этом, поставим мысленный эксперимент по измерению импульса р летящей частицы с массой m. Как известно,

р = mv — поэтому нам достаточно измерить скорость v. Для этого нужно отметить ее положения x>1 и x>2 в моменты времени t>1 и t>2 и затем вычислить скорость по формуле:

v = (x>2 — x>1)/(t>2 — t>1) = Δх/Δt.

Как всегда при измерении, мы на частицу воздействуем и тем самым меняем ее скорость. Поэтому, если нам захочется измерить скорость v как можно точнее, мы должны выбирать точки х>1 и х>2 как можно ближе — перейти к пределу Δx — > 0. В классической физике так и поступают.

Но в квантовой механике мы не можем выбрать точки х>1 и х>2 как угодно близко, и все время должны помнить, что летящая частица — это не точка, а некоторый волновой процесс, и нельзя представлять ее меньшей, чем половина длины волны этого процесса. Поэтому погрешность δх определения каждой из координат х>1 и х>2 всегда будет больше или, в крайнем случае, равна λ/2.

По той же причине расстояние Δx = x>2 — x>1 между двумя последовательными измерениями нет смысла брать меньшим λ/2. Наиболее точное значение скорости v получается при значении Δх = λ/2, тогда оно будет равно v = Δx/Δt = λ/2Δt. Понятно, что даже это значение содержит неустранимую погрешность δv, которая зависит от точности δх определения координат х>1 и х>2 и равна

δv = (δх)/(Δt) ≥ (λ)/(2Δt).

>Дуализм

Сравнивая две последние формулы для v и Δv, приходим к неожиданному, но строгому результату: Δv > v. То есть погрешность определения импульса всегда больше или, по крайней мере, равна его наиболее точно измеренному значению: Δp ≥ p.

Абсолютная величина погрешности δр определяется длиной волны λ. В самом деле, формулу де Бройля λ = h/p можно обратить: р = h/λ. И поскольку δр ≥ р, то δр ≥ h/λ. Величина обеих погрешностей δx ≥ λ/2 и δp ≥ h/λ зависит от длины волны частицы λ. Чем медленнее движется частица, тем больше длина ее волны (λ = h/m v;) и тем меньше погрешность δр. Но как раз для такой частицы очень велика неопределенность координаты δх. Меняя скорость частицы, мы можем уменьшить либо δх, либо δр, но никогда не сможем уменьшить их произведение: δx δp ≥ 1/2h

ОПЫТЫ И МЫСЛИ ПЕРРЕНА

Из нашего анализа следует еще один неожиданный вывод, который, впрочем, нам уже известен: у атомных объектов нет траектории, поскольку при вычислении скорости частицы v = dx/dt нельзя перейти к пределу Δx — > 0, Δt — > 0 и вычислить производную

v = (dx)/(dt) = lim (Δx/Δt), при Δx — > 0.

Это теоретические соображения. На опыте с этим обстоятельством впервые столкнулся Жан Перрен, изучая брауновское движение. Он писал по этому поводу:

«Зигзаги траектории так многочисленны и пробегаются с такой скоростью, что невозможно уследить за ними Средняя кажущаяся скорость частицы в течение определенного промежутка времени претерпевает громадные изменения по величине и направлению и не стремится вовсе ни к какому пределу при уменьшении этого промежутка. В этом легко убедиться, если отмечать положение зернышка на экране через каждую минуту затем через каждые 5 сек. и, наконец, фотографировать их через промежутки в 1/20 сек… Ни в одной точке траектории нельзя получить касательной определенного направления. Трудно в этом случае удержаться от мысли о функциях без производной, в которых напрасно видят лишь математический курьез. В действительности природа внушает представление о них наравне с идеей о функциях, имеющих производную».

Пятнадцать лет спустя догадку Перрена подтвердил создатель кибернетики Норберт Винер, построив теорию брауновского движения на основе «непрерывных функций без производных».

Конечно, брауновское движение — это еще не квантовая механика, но все же это хорошая иллюстрация некоторых ее особенностей.

ПОЭТ И ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

Сам по себе принцип дополнительности, взятый вне физики, изобретение древнее. По существу, он довольно известная категория диалектической логики и в разных видах неоднократно высказывался различными философами во все времена. Аристотель говорил, например, что «гармония — это смешение и сочетание противоположностей», а триады Гегеля можно с успехом приспособить для анализа понятий квантовой механики.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.